Biopharmakon Evaluation of *Remusatia vivipara* and *Theriophonum minutum*

Saroja Preethy, Anbuselvi S.*, Punithavathy R. and Roshini Esther

Department of Industrial Biotechnology, BIHER, Chennai 73, India

*Corresponding Author

Received: 28th January, 2023; Accepted: 21st February, 2023; Published online: 10th March, 2023

https://doi.org/10.33745/ijzi.2023.v09i01.049

Abstract: *Remusatia vivipara* and *Theriophonum minutum* herbs belong to the family Araceae. The aim of this work was to analyze the anti-microbial assay of these two plants against the bacteria *Pseudomonas aeruginosa* (Gram negative), *Bacillus cereus* (Gram positive), and the fungi *Aspergillus niger*. The leaf and tuber of *Remusatia vivipara* and the leaf of *Theriophonum minutum* were selected for the experiment. Different solvents like ethanol, methanol and acetone extract of these selected parts of plants were prepared for the anti-microbial activity. The ethanolic extract of *Remusatia vivipara* and *Theriophonum minutum* species reflected maximum level of zone of inhibition (mm). The minimal inhibitory concentration exhibit least value in ethanolic extract. The species *R. vivipara* have more capacity to inhibit the microbes than *T. minutum*. The minimal bactericidal inhibitory and minimal fungicidal inhibitory showed 99.9% microbes inhibition in ethanolic extract. The ethanolic extract of both species showed best result than the methanol and acetone extract.

Keywords: *Remusatia vivipara*, *Theriophonum minutum*, *Pseudomonas aeruginosa*, *Bacillus cereus*, *Aspergillus niger*, Anti-microbial

https://doi.org/10.33745/ijzi.2023.v09i01.049

This is an Open Access Article licensed under a Creative Commons License: Attribution 4.0 International (CC-BY). It allows unrestricted use of articles in any medium, reproduction and distribution by providing adequate credit to the author(s) and the source of publication.

Introduction

Herbal plants have been used as traditional medicine for human diseases. The use of medicinal plants and its biproducts has named as folk medicine and through the years has been related into traditional and allopathic medicine (Cowan, 1999). The basic components in traditional medicines are extracted or use as such as medicinal plants. These medicines have led to the discovery of natural based products which have become known pharmaceuticals and drug designing (Jain, 2006; Daniel and Salviya, 2008; Anbuselvi et al., 2019a).

According to WHO, medicinal plants said to be the good source to obtain a variety of drugs. The different medicinal plant extracts has been practiced as anti-oxidant, anti-ulcer, analgesic,
anti-diabetic and they also having anti-parasitic, antimalarial, anti-bacterial and anti-fungal activity (Kelmanson et al., 2000). The genus *Theriophonum* (Araceae), represented by dormant tuberous perennials are grown seasonally in India and Sri Lanka. Many studies illustrated that various herbs from the family Araceae exhibited anticancer property like *Colocasia esculenta* (Linn.) and *Acorus calamus* which resulted in moderate anticancer activities against MCF-7 and HT-29 cell lines (Afifi and Rana, 2012).

Theriophonum minutum is a wild edible plant which contains relatively more phytochemicals and nutritive values as compared to conventional foods resources. *Theriophonum minutum* has not been much described about its phytochemical properties as well as its pharmacological action (Yadav and Dixit, 2008)

Remusatia vivipara is an epiphytic herb with 50m tall, arising from an underground tuber with diameter 2–4 cm and red coloured vivid. The bulbils are 5mm long, scaly and ovoid, around scales ending with hooked prickles (Mayo, 1985). The bulbiliferous shoots of *R. vivipara* emerged from the tubers in top part. As they elongate upward, bulbil clusters arranged in each node of the shoot (Wang and Cronk, 2003). Bulbils have top several hooked scales which stimulate dispersal because they can easily fix to the animal’s fur. *R. vivipara* flowers in spring, their pollen grains were in viable and unable to multiply in sucrose solution *in vitro*. These bulbiliferous *R. vivipara* being able to reproduce sexually (Kaatz et al., 1993; Khubalkar et al., 2018).

The traditional systems of Ayurveda medicine implicates pharmacological and clinical studies except composite herbal drugs and plants. These plant products are said to be effective in reducing the recurrence rate of renal calculi with no side effects (Anbuselvi et al., 2019b). The aim of this work was to analyze the anti-microbial assay of the two plants *Remusatia vivipara* and *Theriophonum minutum* against the bacteria *Pseudomonas aeruginosa* (Gram negative), *Bacillus cereus* (Gram positive), and the fungi *Aspergillus niger*.

Materials and Methods

Collection of plants:
The plants *Remusatia vivipara* and *Theriophonum minutum* were identified and authenticated from the Institute of Herbal Science Plant Anatomy Research Centre, Chennai, India.

Collection of micro-organisms and antibiotic discs:
Micro-organisms and specific antibiotic discs were procured from Royal Bio Research Center, Tamil Nadu, Chennai, India.

Preparation of plant extract:
Fresh leaves and tuber of *Remusatia vivipara* and leaves of *Theriophonum minutum* were shade dried and grinded in electric mixer grinder. 10 g of prepared powder samples were taken in a conical flask and homogenized with 100 ml of different solvents such as Ethanol, Methanol and Acetone. The crude preparation was kept in shaker for overnight. Then, the crude preparation was centrifuged at 4000 rpm for 20 min. After centrifugation, the supernatant was transferred into the beaker and heated at 60°C until the solvents evaporate to produce a thick liquid solvent extracts. This thick solvent extracts were poured in sterile bottles and kept under refrigerated conditions for experimental use.

Preparation of culture medium:
The Hi-media medium used throughout the experiment (India make) have the following composition. The media for antibacterial activities were prepared by making 28 g of ingredients in 1 L of distilled water and sterilized in autoclave at 121°C at 15 lbs/inch pressure for 20 min.

Preparation of anti-microbial solution (Control):
The standard drugs Ampicillin, Gentamicin, Erythromycin, Norfloxacin and Penicillin G used as a control for the bacterial species. The standard drug Amphotericin B, Nystatin, Clotrimazole,
Enilconazole and Posaconazole used as a control for fungi Aspergillus niger. Both the anti-microbial solutions were prepared at the volume of 250 mg in 10 ml sterile distilled water.

Antibacterial and Antifungal activity by Agar well/Disc diffusion method:
The agar well diffusion /Disc diffusion method was used for antibacterial activity of prepared extracts. Wells were made by cork borer in petri plates containing solid nutrient agar medium gently seeded with test organisms and wells were filled with samples. After allowing diffusion of solution for 20 min, the plates were incubated at 37 °C for 24 h. The zone of inhibition was measured in each plate in terms of diameter (Khandelwal, 2010).

Minimum Inhibitory Concentration (MIC):
Minimum inhibitory concentration (MIC) is the minimum concentration of antimicrobial compound found to stop the growth of a particular test microorganism. The nutrient broth (double strength) poured in test tubes and label them. The inoculums (three to four drops) is added to reach the final concentration of microorganisms as 10⁶ cells/ml in all test tubes. Test antimicrobial substance was added in the range of 0.5 to 5 ml except un-inoculated (negative control) and control (positive) tube. Adjusted the final volume (10 ml) in all test tubes by using sterile water. All plates were incubated at 37°C for two to three days. After incubation, all test tubes were checked for the growth in the form of turbidity by nephelometry. The minimum inhibitory concentration was analysed by interpreting all results with positive and negative control (Jenifer, 2001).

Determination of Minimal Bactericidal Concentration (MBC):
The MBC was determined by the dilution representing the MIC and two of the more concentrated test product dilutions are plated using Nutrient agar or Mueller Hinton agar plate. (Kokare, 2010). In the prepared agar plate, streak the more concentrated test product dilutions. All samples kept incubation for 24 h at 37°C. After incubation, results enumerated to determine viable CFU/ml. The colony forming unit was calculated using the formula:

\[
\text{CFU} = \frac{\text{Number of colonies counted}}{(\text{Amount plated in ml} \times \text{dilutions})}
\]

Determination of Minimal Fungicidal Concentration (MFC):
The MFC was determined by the dilution representing the MIC and two of the more concentrated test product dilutions are plated using Potato dextrose agar (PDA) plate (Harborne, 1973).

Results and Discussion

Anti-bacterial activity by Disc diffusion method:
The anti-bacterial activity by disc diffusion method was done by using five different antibiotic discs namely, Ampicillin, Gentamicin, Erythromycin, Norfloxacin and Penicillin G. Overall, erythromycin disc showed the highest level of zone of inhibition. The R.vivipara leaves against B. cereus showed maximum zone of inhibition when compared with T.minutum leaves. The ethanolic extract of R.vivipara leaves against Gram positive bacteria B.cereus showed highest (35 mm) zone of inhibition in erythromycin disc. The minimum zone of inhibition was noticed in acetone extract of R.vivipara leaves against gram positive bacteria B.cereus (6mm) zone of inhibition in pencillin G disc. The R.vivipara tuber of Ethanolic extract against the same bacteria showed 32 mm maximum zone of inhibition in erythromycin disc. There was no zone of inhibition in methanolic and acetone extract of R.vivipara tuber against gram negative bacteria P.aeruginosa. The maximum zone of inhibition for ethanolic extract of T. minutum leaves against gram positive bacteria B. cereus was 31mm zone of inhibition in erythromycin disc. The acetone extract of leaves against P. aeruginosa showed minimum zone of inhibition in penicillin G disc (2 mm) (Fig. 1).

Standardization of anti-bacterial activity by Agar-well diffusion:
Agar-well diffusion helps to find out the exact concentration of plant extract against the microbe (Prasad, 2007). The species *R. vivipara* leaves having more capacity to inhibit the microbes than the species *T. minutum* leaves. The plant species *R. vivipara* leaves and tuber in ethanolic extract against the Gram positive bacteria *B. cereus* at 100 µg concentration found to be highest significant level of zone of inhibition 32 mm and 24 mm, respectively (Table 1). The ethanolic extract of *T. minutum* leaves at 100 µg concentration showed higher antibacterial activity against both *B. cereus* and *P. aeruginosa*. The minimum level of zone of inhibition for *T. minutum* leaves against the Gram negative bacteria *P. aeruginosa* showed 6 mm only (Fig. 2).

Anti-fungal activity by disc diffusion method:

The anti-fungal activity by disc diffusion method was done by five different anti-fungal disc namely, Amphotericin B, Nystatin, Clotrimazole, Enilconazole and Posaconazole (Kamali and Amir, 2010). The highest level zone of inhibition for both the extract was observed in clotrimazole disc. The ethanolic extract of *R. vivipara* leaves and tuber against *A. niger* showed maximum zone of inhibition at 100 µg/ml in clotrimazole was found to be 37 mm and 26 mm, respectively. The maximum level of ethanolic extract of *T. minutum* leaves was found to be 29 mm in clotrimazole disc.

The ethanolic extract of *R. vivipara* leaves against *A. niger* showed minimum level of zone of inhibition (8 mm) in posaconazole disc and the tuber showed 3 mm in posaconazole disc of methanolic extract. The acetone extract of *T. minutum* showed minimum level in posaconazole disc (9 mm).

Anti-fungal activity by agar-well diffusion:

The leaves and tuber of ethanolic extract of *R. vivipara* species at 100 µg concentration against the fungi *A. niger* showed greater level of zone of inhibition as 26 mm and 19 mm, respectively. The minimum level of zone of inhibition of *R. vivipara* leaves at 40 µg against *A. niger* was found to be 9 mm in acetone extract. The highest level of zone of inhibition of *T. minutum* leaves against *A. niger* showed 17 mm at 100 µg concentration in ethanolic extract. The lowest level of zone of inhibition of *T. minutum* leaves at 40 µg was found to be 7 mm in acetone extract.

Minimal inhibitory concentration by macro-broth dilution method:

The ethanolic extract of both the plant species showed least MIC value compared to other extracts. The gram positive bacteria *B. cereus* showed the least MIC value than gram negative bacteria *P. aeruginosa* (Khubalkar et al., 2018).

The ethanolic extract of *R. vivipara* leaves at 100 µg/ml showed least MIC against gram positive bacteria *B. cereus* (7.3%) (Fig. 4). The same extract of *R. vivipara* tuber at 100 µg/ml against *B. cereus* showed 8.1%. The *R. vivipara* leaves and tuber against gram negative bacteria *P. aeruginosa* showed least MIC value in ethanolic extract at 100 µg/ml (7.9% and 9.6%, respectively). The gram positive bacteria *B. cereus* showed least MIC value for *T. minutum* species (Bashir et al., 2010). The ethanolic extract of *T. minutum* leaves against gram positive bacteria *B. cereus* at 100 µg/ml showed least MIC value as 9.1%. The ethanolic extract of same leaves against gram negative bacteria at 100 µg/ml showed least MIC value as 9.8%.

Determination of Minimal Bactericidal Concentration (MBC):

Based on MIC, the MBC was calculated. The 80 µg/ml and 100 µg/ml of all three extracts of both plant species showed least value (which inhibit large amount of microbial growth) in MIC ethanolic extract. The ethanolic extract of *R. vivipara* showed maximum result, it was found to be 5.5 CFU/ml against *B. cereus* and 8 CFU/ml against *P. aeruginosa* and the tuber showed 8.7 CFU/ml against *B. cereus* and 8.5 CFU/ml against *P. aeruginosa* (Fig. 5) The ethanolic extract of *T. minutum* showed maximum result, it was found to be 10.5 CFU/ml against *P. aeruginosa* and *B. cereus*. The fungi *A. niger* showed 8.1 CFU/ml for species *R. vivipara* and the tuber showed 8.9
Fig. 1: Disc diffusion method for leaves and tuber of *R. vivipara* and leaves of *T. minutum* species against *B. cereus*.

Table 1: Standardization of anti-bacterial activity by agar-well diffusion method of *R. vivipara* and *T. minutum* species against the Gram positive bacteria *B. cereus*

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Plant extracts</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R. vivipara against B. cereus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leaves</td>
</tr>
<tr>
<td>1</td>
<td>Ethanolic extract</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Methanolic extract</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Acetone extract</td>
<td>19</td>
</tr>
</tbody>
</table>

Fig. 2: Agar-well diffusion method for leaves and tuber of *R. vivipara* and leaves of *T. minutum* species against *P. aeruginosa*.

Fig. 3: Disc diffusion method for leaves and tuber of *R. vivipara* and leaves of *T. minutum* species against *A. niger*.

443
CFU/ml in same extract. The species *T. minutum* showed 8.7 CFU/ml in ethanolic extract.

Conclusion

Remusatia vivipara and *Theriophonum minutum* is an herb having various medicinal properties. The species *R. vivipara* leaves are used as folk medicine for treating inflammation and arthritis and the species *T. minutum* is a unique ethanomedicinal plant. The present study justified the claimed uses of leaves in the traditional system of medicine to treat various disease caused by microbes. Ancient people as well as our ancestors were mainly dependent on plants for their recovery against disease. But, the recent tendency to avoid natural sources rather than artificial sources against disease is frustrating. Based on this view, the pathogenic microbes were tested against both the plant species of different extracts. Both the different plant extracts showed anti-microbial activity. The ethanolic extract of both *R. vivipara* and *T. minutum* exhibited highest level of anti-microbial activity and minimal inhibitory concentration. The species *R. vivipara* species having more capacity to inhibit the microbes than the species *T. minutum*. The phytoconstituents need to be isolated from the extracts and further screen for antimicrobial activity.

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Kerala State Council for...
References

