Efficacy of Some Plants as Insecticide Against *Callosobruchus maculatus* Reared on Black Gram Seeds

Kalpna¹, Kumar Rajesh²*, Hajam Ahmad Younis³ and Kumari Shailja¹

¹Zoology Division, Department of Biosciences, Career Point University, Hamirpur 176041, Himachal Pradesh, India
²Department of Biosciences, Himachal Pradesh University, Shimla 175001, Himachal Pradesh, India
³Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, India

*Corresponding Author

Received: 27th February, 2022; Accepted: 24th March, 2022; Published online: 3rd April, 2022

https://doi.org/10.33745/ijzi.2022.v08i01.041

Abstract: Plant extracts/powders have potential to employ as promising and encouraged alternatives to synthetic insecticides in controlling stored grain pest. During present study, trials were carried out with five plants leaves powders [*Grewia optiva* leaf powder (GOLP), *Morus alba* leaf powder (MALP), *Murraya koenigii* leaf powder (MKLP), *Ficus carica* leaf powder (FCLP) and *Ricinus communis* leaf powder (RCLP)]. Highest insecticidal efficacy against oviposition and emergence of *Callosobruchus maculatus* were recorded after treatment with *Ricinus communis* leaf powder (RCLP). RCLP also offered maximum protection of black gram seeds applied at the dose of 20 g/kg seeds of black gram. Within seven days pest mortality percentile was maximum (86.67 %) as compared to other leaf powders. Whereas in untreated control, zero mortality was recorded. The lowest fecundity (186.6±3.91), pest emergence (95.4±2.89), seed damage (18.00%), and weight loss (5.28%) were noted with RCLP at the dose of 10.0 g/kg. In ovicidal treatment, RCLP inhibited the entire tested population emergence at 10 and 20 g/kg black gram seeds. The complete inhibition was also observed in 1st and 2nd instar larvae. Treatment of 3rd and 4th instar larvae with RCLP showed inhibition.

Keywords: Plant powder, *Callosobruchus maculatus*, Black gram, Infestation, Egg, Larva

Citation: Kalpna, Kumar Rajesh, Hajam Ahmad Younis and Kumari Shailja: Efficacy of some plants as insecticide against *Callosobruchus maculatus* reared on black gram seeds. Intern. J. Zool. Invest. 8(1): 379-388, 2022. https://doi.org/10.33745/ijzi.2022.v08i01.041

Introduction

Around the world, grains, pulses, cereals, and its significant products and by-products are chief and healthy food source; so, efficient protection of these principal food resources is needed. From the traditional time, different crops were grown as similar pattern and harvested. To increase the market value of grains, these were stockpiled in stored houses for prolonged time. With the time these valuable grains are exposed to several damage and losses done by the insect pest infestations. Internationally, stored grain pests provide the maximum damage (qualitative and quantitative) to commodities. The losses may be up to 40 % (Lorini and Filho, 2004; Fields, 2006). Around the world, *Callosobruchus maculatus* is a severe pest of pulses/grains especially in stores. Globally, Black gram seeds are immensely damaged by *Callosobruchus maculatus* (F.) as well
Callosobruchus chinensis (Hafez et al., 2014). Callosobruchus maculatus is a vulnerable insect pest and also carried to storehouses with black gram at the time of harvesting. The heavy infestation as well as damaged grains become hollow and also lead to maximum loss of seed weight. Fully grown adult bruchid emerged out by making an emergence window after completion of larval-pupal growth stage (Kalpna et al., 2022). After few months, it provided inclusive damage to stockpiled grains. Approximately 30-40% damage and losses can be caused by bruchids (Callosobruchus spp.) within 6 months period and it can reach up to complete (100%) loss if remained unattended (Gbaye et al., 2011). To keep various stored pulses away from damage and spoilage, effective management strategies are required. Currently, most of peoples at large and small scale levels use harmful chemical insecticides. These insecticides with harmful chemicals adversely affect our surroundings and also hazardous to consumers (human as well as animals) at different aspects (Salem et al., 2007). At large scale, unsystematic use of various synthetic insecticides has also developed the resistance ability in these insects against such chemicals. Adverse consequences of the synthetic insecticides require assessment of botanical and other environment friendly materials and can be effectively used to control these ubiquitous pests without affecting and threatening to the mankind and flagging stored grain quality (Salem et al., 2007; Mahdi and Rahman, 2008, Alengebawy et al., 2021). There are various plants as well their parts and compounds, being organic, environment friendly and natural, which may create a pathway to initiate such research. Considering these aspects, Musa and Uddin (2016), Obembe and Ojo (2018) and Ileke et al. (2022) recently studied and identified powders/extracts of some plants having insecticidal properties against stored grain pests especially Callosobruchus maculatus. Such botanicals exhibit different feeding and oviposition deterrent properties which suppress the pest by repelling and expelling away. Presently many researchers have designed plant based pest management strategies (Uyi and Adetimehin, 2018; Ileke, 2021; Ashamo et al., 2021). Recently powder form of some plants parts were studied against Callosobruchus maculatus. These are the well authorized example of such botanical compound especially in powder form. With the increasing treatment doses it was observed that the deterrent and repellent activity also increased against insects (Harshani and Karunaratne, 2021; Kavitha and Poornima, 2021). Plant based products are inexpensive and are readily accessed by growers and farmers and also in small-scale business. Recently various authors used plant parts and products in powder/oil form (Sanon et al., 2018; Manju et al., 2019; Soe et al., 2020, Fouad et al., 2020). Due to global population explosion, there is increase in universal requirement for healthy grain production. This produces colossal pressure for small holders to big farmers to enormous crop yields and also enhancement and exorbitant use of chemical pesticides, even without concerns for its long-term effects. Therefore, to avoid the side-effects of synthetic insecticides and their use, without imperil agricultural results outcomes, research for most effective options began in the last few decades and is also presently ongoing. Various plants produce significant compounds to conquer the challenges foisted by nature and are found as the main source of answers to this issue.

In this study, we observed the efficacy of Grewia optiva leaf powder (GOLP), Morus alba leaf powder (MALP), Murraya koenigii leaf powder (MKLP), Ficus carica leaf powder (FCLP) and Ricinus communis leaf powder (RCLP) against C. maculatus. Therefore, these were experimentally tested against different parameters of C. maculatus and black gram seeds such as fecundity, emergence, mortality, seed damage and weight loss etc.

Materials and Methods

Collection and Breeding of Bruchid Pest:

To raise the culture in laboratory, the mother culture of the test insect C. maculatus was
procured from NBAIR, Bangluru, Karnataka, India (Accession no. NBAII- MP- Bru-01-C- maculatus). Rearing was carried out at temperature (27.8±2.5 C) and relative humidity (70.3±1.03%) in biological oxygen demand incubator. Freshly emerged adults were used for study.

Seed sterilization and plant powder preparations:
The black gram seeds were sterilized at 55-60 C for 5 h to kill any hidden infestation. Different plants (*Grewia optiva, Morus alba, Murraya koenigii, Ficus carica* and *Ricinus communis*) were gathered from Career Point University campus and its environs (Table 1). Leaves were air-dried for two weeks, ground separately and filtered through a 70- mesh size sieve.

Experimental design:
Screening of different plant powders against *C. maculatus* to protect black gram seeds were carried out by following the modified protocol as earlier described by Hossain *et al.* (2014). GOLP, MALP, MKLP, FCLP and RCLP were tested against *C. maculatus*. During primary screening each plant powder was applied at 20 g per 50 g black gram seeds in separate glass beakers (250 ml) with five pairs of *C. maculatus* adults. Black gram seeds without plant powder were put into a container and served as untreated control. The beakers were properly tightened with muslin cloth. Completely randomized design with three replications was applied for experiment temperature (27.8±2.5 C) and relative humidity (70.3±1.03%) in biological oxygen demand incubator. From the primary screening, the most effective powder were taken and further tested for secondary screening at lower doses (10, 5, 2.5, and 1.25 g/kg black gram seeds) with 5 replications and control.

Calculations:

- **Adult Mortality (%)** = \(\frac{\text{Dead insects}}{\text{Insects introduced}} \times 100 \)
- **Seed Damage (%)** = \(\frac{\text{Initial wt} - \text{wt of undamaged seeds}}{\text{Initial wt}} \times 100 \) (Girish *et al.*, 1975)

Ovicidal and Larvicidal activity:
100 egg and larva containing seeds were placed in each petri-dish and applied the most effective powder with the doses of 20, 10, 5, 2.5 and 1.25 g/kg black gram seeds along with control. The petri-dishes were remained as such in BOD until adult emergence.

Calculations:

\[
\text{Inhibition} = \left(\frac{\text{Control} - \text{Treatment mean}}{\text{Control}} \right) \times 100
\]

(Shukla *et al.*, 2007)

Statistical Analysis:
The obtained data were statistically analyzed by adopting suitable transformation.

Results

Primary screening:
Fecundity, pest emergence, grain damage and weight loss per cent were differed with all plant powders even at the same dose rate (20 g/kg black gram seeds). Maximum fecundity and pest emerged were noted in untreated control (730 and 700, respectively) while the minimum (169±2.08 and 27.33±4.05) was in *Ricinus communis* leaf powder (RCLP). Again, the highest black gram seed damage (72%) and weight loss (26.35 %) were noticed in the control. RCLP (20 g/kg seeds) caused minimum seed damage and weight loss (12.0 and 3.98%) within 45 days. The highest adult pest mortality percentile was noted with RCLP while there was no adult found dead with untreated control (Table 2).

Secondary screening:
The RCLP was found most effective among all the treated plants. The further treatments were bio-assayed at lower doses.
Table 1: Details of various plants used for evaluating toxicity against *Callosobruchus maculatus*

<table>
<thead>
<tr>
<th>Botanicals</th>
<th>English name</th>
<th>Family</th>
<th>Parts used</th>
<th>Powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grewia optiva</td>
<td>Bhimal</td>
<td>Tiliaceae</td>
<td>Leaves</td>
<td>GOLP</td>
</tr>
<tr>
<td>Morus alba</td>
<td>Mulberry</td>
<td>Moraceae</td>
<td>Leaves</td>
<td>MALP</td>
</tr>
<tr>
<td>Murraya koenigii</td>
<td>Curry Leaves</td>
<td>Rutaceae</td>
<td>Leaves</td>
<td>MKLP</td>
</tr>
<tr>
<td>Ficus carica</td>
<td>Common fig</td>
<td>Moraceae</td>
<td>Leaves</td>
<td>FCLP</td>
</tr>
<tr>
<td>Ricinus communis</td>
<td>Castor bean</td>
<td>Euphorbiaceae</td>
<td>Leaves</td>
<td>RCLP</td>
</tr>
</tbody>
</table>

Table 2: Effects of plant powders on oviposition, pest emergence, mortality, seed damage, and weight loss caused by *Callosobruchus maculatus* on black gram seeds (n=3)

<table>
<thead>
<tr>
<th>Plants powder (20 g/kg seeds)</th>
<th>No. eggs laid Mean ± SE</th>
<th>No. of adult emerged Mean ± SE</th>
<th>Adult mortality (%)</th>
<th>Seed Damage (%)</th>
<th>Seed weight loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLP</td>
<td>651.33±2.03</td>
<td>641.67±4.41</td>
<td>46.67</td>
<td>64.93</td>
<td>22.01</td>
</tr>
<tr>
<td>MALP</td>
<td>662.33±4.33</td>
<td>635.00±4.04</td>
<td>43.33</td>
<td>63.33</td>
<td>22.01</td>
</tr>
<tr>
<td>MKLP</td>
<td>403.33±4.41</td>
<td>187.33±2.67</td>
<td>73.33</td>
<td>19.33</td>
<td>6.46</td>
</tr>
<tr>
<td>FCLP</td>
<td>561.00±5.51</td>
<td>344.33±3.48</td>
<td>66.67</td>
<td>42</td>
<td>12.26</td>
</tr>
<tr>
<td>RCLP</td>
<td>169±2.08</td>
<td>27.33±4.05</td>
<td>86.67</td>
<td>12</td>
<td>3.98</td>
</tr>
<tr>
<td>Control</td>
<td>730</td>
<td>700</td>
<td>0</td>
<td>72</td>
<td>26.35</td>
</tr>
</tbody>
</table>

Effect of RCLP on fecundity, pest emergence, grain damage and loss:

Fecundity: With different treatments fecundity of female *C. maculatus* was highly affected at the dose rate of 10.0 g/kg seed and the lowest eggs (186.6±3.91) were observed. Again, the maximum eggs were deposited in the control without RCLP (750.0), and followed at the dose of 1.25 g/kg seeds treated with RCLP (297.6±5.13) (Table 3; Fig. 1).

Pest emergence: During the treatment of black gram seeds with RCLP at the dose rate of 5.0, 2.5 and 1.25 g/kg grains the pest emergence were noted 169.2± 2.48, 184.0±3.67 and 189.0±3.32, respectively. The dose rate of 10 g/kg were found effective and observed lowest (95.4±2.89) emergence. The number of adults was recorded maximum in control (730.0) (Table 3; Fig. 1).

Seed damage and weight loss: Among all the treatment of RCLP with different doses the variations were observed in seed damage and loss caused by *C. maculatus*. The highest damage percentage (74.00) was noted with control and minimum (18%) with 10.0 g/kg dose. Similarly, the weight loss percentage of black gram seeds was found maximum with control. Lowest seed losses were found with RCLP applied at 10.0 and 5.0 g/kg seed (Table 3).

Ovicidal Effect:

RCLP were found 100% effective with dose rate of 10 and 20.0 g/kg seed and act as protectant of 100 black gram seeds containing eggs. No adult *C. maculatus* was emerged with this treatment within 30 days. RCLP was also effective at other lower doses (Table 4; Fig. 2).

Larvicidal effect:

During larvicidal study of 1st and 2nd instar larva the complete inhibition was occurred with 20g/kg seeds while the lowest at 1.25 g/kg seeds. While during the study with 3rd instar larva, the inhibition (92.44%) was found with similar dose.
Table 3: Effects of *Ricinus communis* leaf powder on oviposition, adult emergence, mortality, seed damage, and weight loss caused by *Callosobruchus maculatus* on black gram seeds (n=5)

<table>
<thead>
<tr>
<th>Dose (g/kg seeds)</th>
<th>No. eggs laid Mean ± SE</th>
<th>No. of adult emerged Mean ± SE</th>
<th>Adult mortality (%)</th>
<th>Seed Damage (%)</th>
<th>Seed weight loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCLP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>186.6±3.91</td>
<td>95.4±2.89</td>
<td>86.0</td>
<td>18.00</td>
<td>5.28</td>
</tr>
<tr>
<td>5</td>
<td>254.0±4.30</td>
<td>169.2±2.48</td>
<td>74.0</td>
<td>21.99</td>
<td>7.49</td>
</tr>
<tr>
<td>2.5</td>
<td>286.0±4.0</td>
<td>184.0±3.67</td>
<td>68.0</td>
<td>24.96</td>
<td>12.42</td>
</tr>
<tr>
<td>1.25</td>
<td>297.6±5.13</td>
<td>189.0±3.32</td>
<td>62.0</td>
<td>25.36</td>
<td>12.65</td>
</tr>
<tr>
<td>Control</td>
<td>750.0</td>
<td>730.0</td>
<td>0</td>
<td>74</td>
<td>27.27</td>
</tr>
</tbody>
</table>

The results were comparable similar with the results of 1st instar larva (92.22%) at 10 g/kg seeds. While less inhibition was occurred with 4th instar in comparison to other treatments (Table 4; Fig. 2)

Discussion

In the present study RCLP showed toxicity in *C. maculatus* adult as well as in developing stages. The minimum egg laying occurred after treatment with 20 g/kg w/w and few eggs (169±2.08 eggs) were deposited. Treatment with lower dose of RCLP also showed effectivity on oviposition in comparisons to other treated plant powders. These results derive support from the findings of Miah *et al.* (2013), who have reported decreased oviposition of female *C. maculatus* after the treatment with RCLP at the rate of 5% w/w. the present findings are also supported by observations of Shitu *et al.* (2020) who have used *Ricinus communis* extracts. The RCLP also had promising effect on number of adult emerged (27.33±4.05) and adult mortality (86.67) at 20 g/kg seeds, while there was 0% mortality in control. The results of powder were also found effective at the treatment of lower doses of 10...
Table 4: Number of adults of *Callosobruchus maculatus* emerged and inhibition % from 100 eggs and larvae bearing black gram seeds after treatment with *Ricinus communis* leaf powder (RCLP) (n=5)

<table>
<thead>
<tr>
<th>Dose g/kg seeds (RCLP)</th>
<th>Ovicidal effect</th>
<th>100 egg bearing black gram seeds</th>
<th>Larvicidal effect</th>
<th>100 larva bearing black gram seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of adult emerged</td>
<td>Inhibition %</td>
<td>No. of adult emerged</td>
<td>Inhibition %</td>
</tr>
<tr>
<td>1st instar</td>
<td>2nd instar</td>
<td>3rd instar</td>
<td>4th instar</td>
<td>5th instar</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>100</td>
<td>8.8±0.37</td>
<td>90.22</td>
</tr>
<tr>
<td>5</td>
<td>31.6±1.50</td>
<td>64.49</td>
<td>18.0±1.22</td>
<td>80.00</td>
</tr>
<tr>
<td>2.5</td>
<td>52.8±1.66</td>
<td>40.67</td>
<td>53.6±1.33</td>
<td>40.44</td>
</tr>
<tr>
<td>1.25</td>
<td>76.2±1.39</td>
<td>14.38</td>
<td>82.2±1.56</td>
<td>8.67</td>
</tr>
<tr>
<td>Control</td>
<td>89</td>
<td>-</td>
<td>90</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Inhibition is calculated as 100 - (No. of adult emerged / Total No. of seeds) * 100.
Fig. 2: Emergence inhibition % with treatment of *Ricinus communis* leaf powder on black gram seeds having eggs and larva of *C. maculatus*.

g/kg and 5 g/kg seeds. Latif *et al.* (2012) also reported that plant powder can act as adult pest emergence inhibitor.

Hossain *et al.* (2014) also noticed similar findings as observed in the present study when *C. chinensis* infesting chickpea seeds were treated with castor (20 g/kg w/w). The aqueous extract of leaves of *Ricinus communis* caused lowest percentage of adult emergence (30.90%) (Mahmoud *et al.*, 2020). The RCLP treatment also showed effect on seed damage and weight loss in black gram seeds infested by *C. maculatus*. The results of present study are strengthened by findings of Rouf *et al.* (1996) who have reported that some botanicals (Neem, Nishinda and Biskatali) act as seed protectant. Babarinde *et al.* (2011) recorded 100% larval mortality with RCLP extracts at the dose of 0.3 ml/5 g seed against *Tribolium* sp. Upasani *et al.* (2003) found *R. communis* leaf extracts as better oviposition deterrent for *C. chinensis*, and number of adults emergence almost nil at 6.5 mg ml\(^{-1}\) as compared to untreated and solvent controls. Similarly, Lal and Deepshika (2012) and Anam Sarwar *et al.* (2019) reported the use of castor and neem as grain protectant and also as complete inhibitor of adult emergence.

During ovicidal and larvicidal study the RCLP showed 100% inhibition in adult emergence when treated with 10 and 20 g/kg seeds while results with other lower doses treatments also had efficient and promising outcomes. Similarly castor oils showed 100% reduction in adult emergence in *C. maculatus* infesting moong bean. These powders/oils may act as toxic to eggs and larvae and entirely inhibit the pest emergence (Anam Sarwar *et al.*, 2019). Bamaiyai *et al.* (2007) reported that plants exhibit ovicidal activities which abolish the developing pulse beetle. *Ricinus communis* leaves contain excellent insecticidal property. They have flavonoids (flavonol type) that have astonishing ovicidal as well deterrent activities for *Callosobruchus chinensis* (Upasani *et al.*, 2003). The performance of botanicals as suppressant against pulse beetle observed in this study was also earlier reported by Shaaya *et al.* (1997). The seed damage rate for stored grains was also reduced while treated with botanicals.

Among other tested botanicals, MKLP also showed significant results for egg laying, adult emergence, adult mortality and pulse beetle infestation at 20 g/kg seeds. The other plants used in the study did not show efficient results for inhibition of pest emergence, grain damage and
loss at the dose of 20 g/kg seeds. In this study
diverse toxic efficiency of plant powders did not
consistently showed the inhibition and lethal
activities. Various botanicals such as castor, neem
leaf, seed powder and other agriculture waste
powder (rice and wheat husk) etc. provide
convincing results against *Callosobruchus* sp.
(Ileke *et al*., 2013; Edwin and Jacob, 2017; Ashamo
et al., 2021; Gbata *et al*., 2021).

RCLP when directly applied to black gram
seeds then it purely attached on seed surface and
evenly distributed. This severely affects the *C.
maculatus* (egg, larva and adults). These results
are supported by Lale and Alaga (2001). *R.
communis* extracts were applied to larval and
adult stages. High mortality was observed with
larval stages because exoskeleton of adult insects
was heavily sclerotized. So, the permeability of
toxic materials in cuticle were high in larva as
compared to adults. The plant powders have
combination of various active insecticidal
constituents, generally monoterpenoides
(Regnault-Roger *et al*., 2002). These active
constituents in botanicals showed different mode
of action against pests and especially they affect
nervous system. It also disturbs the GABAergic as
well amineergic system and also obstruct the
acetylcholinesterase activity (Tong and Coats,
2012; Abdelgaleil *et al*., 2016).

Conclusion

In this study, black gram seeds infested by
Callosobruchus maculatus were exposed to various
plant leaf powders. These findings provide great
attention in which we found that metamorphosis
of 1st and 2nd instar larva was completely inhibited
by RCLP. RCLP showed effectiveness against all
studied parameters including eggs laid, pest
emergence, and mortality. Other plant powders
could be explored in future to check their
insecticidal potential. Highly effective plant
powders can be recommended as combinations.
Moreover, this is environment friendly, cost
effective, readily available and harmless approach
to control *C. maculatus* infesting black gram at
farmer level. Active compounds of RCLP could also
be isolated and such formulations should be used
against pests. This study enhances the use of
plants as insecticides and also for stored grain
pest management strategy.

Acknowledgements

Authors are highly grateful to Authorities of
Division of Zoology and Microbiology, Career Point
University, Hamirpur, Himachal Pradesh, and
Department of Biosciences, Himachal Pradesh
University, Shimla, Himachal Pradesh, India for
providing necessary laboratory and research
facilities.

References

Abdelgaleil SA, Mohamed MI, Shawir MS and Abou-Taleb
HK. (2016) Chemical composition, insecticidal and
biochemical effects of essential oils of different plant
species from Northern Egypt on the rice weevil,

Aengebawy A, Abdelkhalak ST, Qureshi SR and Wang
MQ. (2021) Heavy metals and pesticides toxicity in
agricultural soil and plants: Ecological risks and

Anam Sarwar SA, Shah SS, Afzal S, Zia A, Khan I and
Callosobruchus maculatus (Coleoptera: Bruchidae)
on stored mung bean (*Vigna radiata*). *Asian J Agric
Bio.* 7: 204-209.

Ashamo MO, Ileke KD and Ogungbile OC. (2021)
Entomotoxicity of some agro-wastes against cowpea
bruchid, *Callosobruchus maculatus* (Fab.)[Coleoptera:
Chrysomelidae] infesting cowpea seeds in storage.
Heliyon 7: e07202.

Ashamo MO, Ileke KD and Onasile AI. (2021) Chemical
composition and toxicity of some Agro waste-derived
insecticides against Angoumois grain moth, *Sitotroga
cerakella* (Olivier) [Lepidoptera: Gelechiidae] infesting

Babarinde SA, Oyegoke OO and Adekunle AE. (2011)
Larvicidal and insecticidal properties of *Ricinus
communis* seed extracts obtained by different
methods against *Tribolium castaneum* Herbst
(Coleoptera:Tenebrionidae). *Arch Phytopathol Pflanz
Enschutz.* 44: 451-459.

Edwin IE and Jacob IE. (2017) Bioinsecticidal potency of
five plant extracts against cowpea weevil,
Callosobruchus maculatus (F), on stored cowpea,

Lal D and Deepshikha VR. (2012) Efficacy of application of four vegetable oils as grain protectant against the growth and development of *Callosobruchus maculatus* and on its damage. Soc Edu India 3(2): 55-59.

Miah MMU, Ali SMI and Hossain MI. (2013) Assessment of risk factors that affecting agriculture productions and identifying adaptation options for increased productions and improved livelihoods of the farming

