Medicinal Plants with Antidiabetic Potential: A Brief Review

Vasukidevi Ramachandran, Babu M., Ashok K. and Janaki Devi V.*

Department of Microbiology and Biotechnology, Faculty of Arts and Science, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India

*Corresponding Author

Received: 16th November, 2022; Accepted: 18th December, 2022; Published online: 28th December, 2022

https://doi.org/10.33745/ijzi.2022.v08i02.113

Abstract: Diabetes mellitus is a set of metabolic diseases that share hyperglycemia's similar basic characteristics. In addition to hyperglycemia, micro- and macro-vascular problems are linked with diabetes which are the main causes of morbidity and mortality. Sulphonylurea, biguanides etc. are frequently used to treat hyperglycemia and are commercially accessible antidiabetic medicines. The course of diabetic complications is not altered appreciably by these medications. Different medicinal plants utilised for antidiabetic activities have been examined in this study. Diabetes mellitus is one of the most prevalent diseases worldwide. It is even significant that it is in an epidemic in many developing countries or new industrialized nations, the fourth top cause of mortality in the more developed countries. This study identified the plants with anti-diabetic and associated therapeutic properties from various regions of the world. History demonstrated that traditional medicinal herbs across the globe are for a long time used to treat diabetes, as described in scientific publications, since these herbal plants contain hypoglycemic characteristics and other therapeutic features.

Keywords: Diabetes mellitus, Medicinal plants, Synthetic drugs, Communicable diseases

This is an Open Access Article licensed under a Creative Commons License: Attribution 4.0 International (CC-BY). It allows unrestricted use of articles in any medium, reproduction and distribution by providing adequate credit to the author(s) and the source of publication.

Introduction

Herbal medicine is human beings' earliest known type of medicine. Throughout history herbs were utilised by all societies (Kooti et al., 2016). It was an essential component of modern civilization's growth. Primitive man noticed and valued his wide range of flora. The food, clothes, refuge and medication were supplied by the plants (Bhushan et al., 2010). A large part of the plant therapeutic usage appears to be achieved by wild-animal observations and tests and errors. As time goes on, every tribe has added to its knowledge about the therapeutic potency of plants in their area (Kavishankar et al., 2011). They gathered data on plants and produced well-defined herbal pharmacopoeia (Arumugam et al., 2013) systematically. In fact, most of the scientific
pharmacopoeia was generated from the herbal nature of the local peoples until the 20th century. Many of the medicinal products currently in use are herbal in origin (Surya et al., 2014). Indeed, around 25% of prescription medicines in the U.S. include a minimum of one herbal active component. Some consist of extracts from plants; others are manufactured in order to imitate a natural compound plant (Chan et al., 2012).

Antidiabetic plant knowledge has been gathered from many journals, web-sites and books (Singh et al., 2013). These are especially investigated to analyse the phyto-constituent and various mechanisms that might change the metabolism of blood glucose. The kind of chemical composition and comparable mode of action can also be similar (El-Tantawy and Temraz, 2018), based on the concept that plants belong to a certain family.

Diabetes is a serious metabolic disease. It is observed after any sort of food as a rise in blood glucose. Diabetes is the outcome of lack or dysfunction of insulin (Hasani-Ranjbar et al., 2008). Statistics show that 2.8% of the world’s population is affected by this illness, and by 2030 it will rise to almost 7% (Furman et al., 2020). Early diagnosis, treatment and changes in lifestyle are needed for diabetes. Diabetes is a condition which is the fifth leading cause of mortality to many in the 21st century.

The urgent need for appropriate treatment (Fumen et al., 2020) is all highly prevalent, varied aetiology, progressive processes, and diabetic consequences. Different therapies are currently available to manage diabetes, including insulin therapy, medication and dietary therapy. There are several kinds of medicines that reduce glucose that use distinct methods to produce anti-diabetic effects. These include stimulation of sulfonylurea and meglitinide insulin secretion, increased peripheral glucose absorption by biguanides and thiazolidinediones, delay in the absorption by alpha glucosidase of carbohydrates and the decrease of liver gluconeogénésis by biguanides (Kumar et al., 2011). Reduction in blood glucose was the major result of anti-diabetic effects (Rao et al., 2010).

Strong blood glucose decreases have been seen in human trials following Citrullus colocynthus L., Silybum marianum, Psyllium, Teucrium polium and Pomegranate treatment (Stolf et al., 2017). In type 2 diabetes individuals, Securigera securidaca exhibited no advantage in improving glycemic profile. The hypoglycemic effect of Salvia and Morus nigra was not improved however, the use of extracts improved neuropathy and polyphagia (Nazarian-Samani et al., 2018).

There are several plants in Iran that diabetes people ingest unofficially (Farzaei et al., 2017). Some of these herbs have been shown, in diabetic individuals, to be beneficial for lowering blood glucose (Tundis et al., 2010). In addition animal investigations have revealed that certain natural plants are even more effective (Ranasinghe et al., 2012). In order to hunt for new therapeutic agents, special attention to these molecules becomes required. Some of these herbs have shown a substantial effect on animals, but not humans’ hypoglycemia (Ghosh and Konishi, 2007). This disagreement seems to have been attributable to improperly planned clinical studies; additional investigations in diabetes individuals thus have to be clarified. Notably, these herbal remedies might have a hypoglycemic impact on the hypoglycemic and insulin medications which are typical therapies for diabetic patients. Most doctors urge their patients to avoid herbal medicine, although sometimes people with diabetics use these before they are told by their doctors (Al-Aboudi and Afifi, 2011). Such herbal treatment might lead to interaction between drugs and instable monitoring of blood glucose level (Ivorra et al., 1989). Thus, clinicians should have enough information about herbal medications effective on blood glucose and should be prepared how to handle patients who are at risk. Any intake of medicinal plants must be under the supervision of physicians (Bahadoran et al., 2013).
Antidiabetic potential of traditional medicines:

Ricinus communis:

The traditional medication used to treat Diabetes mellitus is *Ricinus communis* (Bandara *et al.*, 2012). This plant is utilised in the Indian medicine system to cure inflammation and liver problems through its leaves, root and seed oils. The administration over the long term resulted to a considerable decrease in blood glucose in diabetes rats, but the blood glucose in the control animals was not altered significantly (Bandara *et al.*, 2012).

Acacia Arabica:

It is found across India. The extract from the plant works as an anti-diabetic agent in order to release insulin as a secretagogue. Hypoglycemia is induced in rats, but not in animals that are alloxanized (Rafe, 2017).

Achyranthes aspera:

In both normal and diabetic rabbits, *A. aspera* powder causes a substantial hypoglycemic dose-related effect. In normal and alloxan diabetic rabbits, water and methanol extracts also reduce blood glucose. The acute rabbit toxicity studies showed that this folk medication does not have an unfavourable or secondary impact at low doses (Chukwuma *et al.*, 2019).

Vernonia anthelmintica:

Vernonia anthelmintica is an annual herbaceous plant found in India. This plant seed has a major hypoglycemic impact in streptozotocin-induced diabetic rats. Diabetic rats generated by streptozotocin were used to investigate the anti-diabetic effect of this extract and the blood glucose levels were established (Governa *et al.*, 2018).

Conclusion

Diabetes is an insulin disease caused by metabolism of glucose, fat and protein due to reduced insulin production and increasing resistance. In patients with insulin-dependent and non-insulin-dependent diabetes, diabetic retinopathy, peripheral diabetic neuropathies etc., herbal therapies were utilised for diabetes. The usefulness of botanicals in lowering sugar levels has been proven via scientific validation of numerous Indian plant species.

References

