Comparative Assessment of Pancreatic Morphometry Among Hyperglycemic (F0), F1 Generation and *Syzigium cumuni* Treated Offsprings (F1-T) of Swiss Albino Mice

Kumari Rekha

Department of Zoology, Tilka Manjhi Bhagalpur University, Bhagalpur, 812007, India

Received: 1st November, 2021; Accepted: 27th November, 2021; Published online: 2nd December, 2021

https://doi.org/10.33745/ijzi.2021.v07i02.066

Abstract: Now-a-days with the changes in population lifestyle, prediabetes is constantly on the surge. Management of prediabetes currently depends fully on lifestyle modifications like weight loss, exercise and diet control. Better drugs with acceptable safety profile are needed for better control of prediabetes. The present research assessment sought to compare the effectiveness of *Syzigium cumuni* (Black plum) seed powder on the pancreas through pancreatic morphometry on the generations obtained when hyperglycemic (Alloxan monohydrate persuaded) male mice mated with normal female.

Morphometry refers to quantitative analysis of shape and size. Histomorphometric studies were performed with the help of Linear Scale Occular Micrometer and Area-Measuring Occular grid inserted into the eye piece, both calibrated with a 1 mm stage micrometer. Histological slides of pancreas were used for morphometric analysis. Hyperglycemic conditions in the male mice were persuaded by injecting alloxan monohydrate, which prompt insulin deficiency in them and their obtained generation also. These mice were kept in Groups F0 and F1, respectively. Now these F1 groups were given fixed dose of *Syzigium cumuni* (Black plum) seed powder along with food and were kept in Group F1-T. Comparative morphometric assessment of pancreas were performed among F0 (Diabetic Male), F1 (generation of F0), F1-T (F1 generation fed with *Syzigium cumuni* seed powder along with food) at the time of birth and at weaning time.

Drastic decrease is noticed in pancreatic diameter at the time of birth and at weaning time in case of F1 when compared with F0. Now when these F1 were given *Syzigium cumuni* seed powder along with the food, parameters were observed to be improved. Hyperglycemia may affect the epigenetic modifications during spermatogenesis and inherit through male germ line and these changes may passed onto more than one generations. *Syzigium cumuni* (Black plum) seed powder sparks the secretion of pancreatic insulin, and it also brings back the histoarchitecture of β-cells of pancreas in F1-T generation.

Presence of various identified phytochemicals in *Syzigium cumuni* (Black plum) seed powder with their described mechanisms of action shows that some compounds target multiple metabolic routes, thereby, becoming a potential pharmacological tool.

Keywords: Prediabetes, Histoarchitecture, Hyperglycemia, Pharmacological, Phytochemicals, Spermatogenesis, Transgenerational, Alloxan, *Syzigium cumuni*

Citation: Kumari Rekha: Comparative assessment of pancreatic morphometry among hyperglycemic (F0), F1 generation and *Syzigium cumuni* treated offsprings (F1-T) of Swiss albino mice. Intern. J. Zool. Invest. 7 (2): 801-807, 2021.

https://doi.org/10.33745/ijzi.2021.v07i02.066
Introduction

The history of diabetes is very old but modern civilization and its life style has made it an epidemic. The past two decades have seen an explosive surge in the number of people diagnosed with diabetes worldwide. Conspicuous changes in the human environment and his behaviour and lifestyles accompanied by globalisation have resulted in escalating rate of obesity and diabetes. High content of starchy diets, fast food, and beverages and stressful life are the major contributors of the increased occurrence of diabetes (Kerrison, 2017).

Diabetes mellitus is a group of metabolic disorders resulting in hyperglycaemia. Genetic and environmental factors contribute to the insufficient secretion of insulin, decreased response to insulin either endogenous or exogenous, raised glucose production, with or without abnormalities in fat and protein metabolism. The resultant hyperglycaemia might lead to acute symptoms and metabolic abnormalities (Powers, 2018).

It is a very complex metabolic disorder associated with developing insulin resistance, impaired insulin signaling and β-cell dysfunction, abnormal glucose levels and lipid metabolism, sub-clinical inflammation and increased oxidative stress. These metabolic abnormalities lead to long-term pathogenic conditions including micro- and macro-vascular complications, neuropathy, retinopathy, nephropathy, and a consequent decrease in quality of life and a hike in the rate of mortality (Kerrison, 2017). The main leading factor in progression of diabetes is diet. Both experimental and epidemiological evidences have proved that consumption of vegetables rich in phenolic compounds and possess high antioxidant capacity may have inverse relationship with the incidence and prevalence of diabetes (Liu et al., 2020). Dietary control remains one of the most dominant and desirable avenues for the prevention and management of chronic degenerative diseases such as diabetes and cardiovascular diseases. Although, throughout the world various conventional herbal plants have been used as traditional medicine to treat diabetes, a lot remains to be done scientifically to confirm the efficacy of these herbal plants (Yeh, 2003).

WHO (World Health Organisation) projects that diabetes will be the 7th leading cause of death in 2030. India leads the world with largest number of diabetic subjects earning the dubious distinction of being termed the “Diabetes capital of the world”. Although the prevalence of type 1 and type 2 diabetes mellitus (Powers, 2015) is increasing worldwide, the prevalence of type 2 diabetes mellitus is rising much more rapidly, presumably because of increasing obesity, reduced activity levels as countries become more industrialized and also due to ageing of the population. Over the time, diabetes can increase the risk of health-related problems including nerve damage, kidney damage, blindness, amputation of lower limbs and cardio-vascular diseases. Although diabetes cannot be cured, the disease can be managed by non-pharmacological and pharmacological strategies, where improvements in glycemic control are important factors in delaying the onset and progression of diabetes-related complications (Kerrison, 2017).

Syzigium cumuni:

Syzigium cumuni (black plum), growing extensively in different agro-climatic countries possess several medicinal properties (Ayyanar et al., 2013). The extracts of various parts of *S. cumuni* contains phytochemicals including tannins, anthocyanins, terpenes, flavanols and aliphatic-acids (Sharma et al., 2011; Srivastava et al., 2020, 2021). All parts of *S. cumuni* are rich in polyphenols (Sharma et al., 2008). Both fruit and flowers of *S. cumuni* are enriched in anthocyanins as cyanidin, delphinidin, peonidin, pelargonidin, petunidin, and malvidin (Ramaya et al., 2012). The seeds of *S. cumuni* contain rucetin and quercetin while leaves have been reported to contain kaempferol, myricetin, quercetin and their glycosides (Ayyanar, 2013). The plant has been
reported to contain ellagic acid, triterpenoids, acetyl oleanolic acid, quercetin, isoquercitrin, myricetin and kaempferol. *S. cumuni* possesses antihypoglycemic, antimicrobial, hypolipidemic, anti-allergic, anti-inflammatory, cardio-protective, hepato-protective and antineoplastic properties (Baliga, 2013).

Syzigium cumuni belongs to the family Myrtaceae, is a large evergreen tree up to 30 m height and a girth of 3.6 m with a bole up to 15 m found throughout India up to an altitude of 1,800 m (Ross, 2003). Most of the plant parts of *S. cumuni* are used in traditional system of medicine in India. The original home of *Syzigium cumuni* is India or the East Indies. It is also found in Thailand, Philippines, Madagascar and some other countries. The plant has been successfully introduced into many other tropical countries such as the West Indies, East and West Africa and some subtropical regions including Florida, California, Algeria and Israel (Ross, 2003).

The present study was conducted-- (i) to investigate the antidiabetic efficacy of *Syzigium cumuni* seed powder in alloxan monohydrate persuaded hyperglycemic Swiss albino mice; and (ii) to analyze the effectiveness of *Syzigium cumuni* seed powder in pancreatic morphometry of hyperglycemic (F0), F1 generations and *Syzigium cumuni* treated offsprings (F1-T) of Swiss albino mice.

Materials and Methods

Plant Material:

Fresh *Syzigium cumuni* seeds were collected from trees grown in the campus of University Department of Botany, Tilka Manjhi Bhagalpur University, Bhagalpur, India and air dried in the sun, reduced to coarse powder with the help of mortar and pestle and kept in airtight jar till utilization.

Experimental animal:

Thirty Swiss albino adult male mice (12 weeks old; bw 25-30 g) were used for investigation. The animals were procured from CDRI Lucknow, India. Mice were maintained at the Animal House of University Department of Zoology, Tilka Manjhi Bhagalpur University, Bhagalpur. The animals were housed under standard laboratory conditions such as temperature (26±2°C), relative humidity (45-55%), and 12 h dark/light cycle and provided with pelleted diet and water ad libitum.

Experimental Design, Drug and Dosage:

After recording the initial body weights, all animals were divided into three groups of ten each and treated as follows:

- **Group F0:** Mice made diabetic by intraperitoneal injection of alloxan monohydrate.
- **Group F1:** Generation obtained from F0 by mating F0 males with normal females.
- **Group F1-T:** Feeding *Syzigium cumuni* seed powder along with food (200 mg/kg bw/day) for 28 days followed by sacrificing the animals after cessation of the treatment.

Induction of Hyperglycemia:

The experimental animals were kept on fast before induction of diabetes (Harrowfield et al., 1973). Hyperglycemia was persuaded intraperitoneally by administrating alloxan monohydrate, which was procured from Loba Chemicals, Mumbai. All other chemicals used in the present study were of analytical grade and were procured from commercial suppliers. Total dose of Alloxan monohydrate (450 mg/kg/bw) was administered in three injections at intervals of 48 h (150 mg/kg/bw) each time.

Alloxan is a urea derivative which causes selective necrosis of the β-cells of pancreatic islets. It has been widely used to induce hyperglycemia in experimental animal species such as rabbits, rats, mice and dogs (Yashimoto et al., 1993).

Animal Sacrifice and Organ Collection:

After recording the final body weights the animals were sacrificed by cervical dislocation. Among ten animals from each group, five animals were used...
for the histological assessment. The pancreas (Powers, 2018) were dissected out, blotted free of blood and processed for the following studies:

Morphometric Study of Pancreatic Islets:

Morphometry refers to quantitative analysis, a concept that encompasses size and shape. Morphometric (Webiel, 1963) analysis is commonly performed on organisms which is very useful in analyzing developmental changes in forms, for estimating quantitative–genetic parameter of shape and detecting changes in shape. A major objective of morphometrics is to statistically test hypothesis about factors that affects shape.

Histomorphometric studies was performed with the help of a Linear Scale–Occular Micrometer and an Area –Measuring Occular grid inserted into the eye piece. Occular micrometer and Occular grid were calibrated with a 1 mm stage micrometer before utilization. 24 histological stained sections (8 from each group) were used for morphometric analysis.

Pancreatic Mass:

Pancreas were dissected out, washed in saline (0.9 % NaCl), dried with the help of blotting paper and wet weight of gland was measured using digital scale balance.

Islet Density:

Islet density is the number of islets per microscopic field. Four random fields were selected per section. Islet size was estimated by measuring diameter of islet under microscope (Hoftiezer, 1973). Density was calculated as follow:

\[
\text{Volume Density (VD)} = \frac{P \text{ (Islet)}}{P \text{ (Reference)}}
\]

Where, \(P \text{ (Islet)} \) is number of test points falling on islet’s profile, and \(P \text{ (Reference)} \) is reference space.

Determination of Islet Diameter:

Morphometry is used to calculate islet diameter using a graticule from a calibrated linear scale major axes (a), minor axes (b) and axes of islets at right angle to major axes (a) were measured and mean islet diameter was calculated.

Diameter of islet \((D) = \sqrt{ab} \)

Where, \(a = \) major axis, and \(b = \) minor axis.

No. of islets per unit area \((\text{NA}) = \frac{N}{\text{AT}} \)

Where, \(N = \) No. of sectioned profile of islets, and \(\text{AT} = \) Area of section.

Islet area was measured in each pancreatic section at 400 X magnification using ocular grid.

Statistical analysis:

All the data were analyzed statistically by one way ANOVA. Values were considered significant at \(P<0.05 \).

Results

Morphometric study grabs attention on significant differences in the diameter of the pancreatic islets indiabetic individuals (Group II) to those of *S. cumuni* fed individuals, (Group F1-T) when compared withcontrol ones (Group F0). Changes in pancreatic morphometry (per cent volume density and diameter) and pancreatic mass at birth and at weaning stage are recorded in Tables 1 and 2.

The pancreatic per cent volume density at birth was recorded as 20.4±0.79 % in F-0 group of mice and this value decreased to 19.1±0.74 % in group-F1, while in F1-T group it recovered to 20.1±0.74%.

The pancreatic volume density per cent at weaning was recorded as 20.8±0.67 % in F-0 group of mice and this value decreased to 19.3±0.62 % in group-F1, while in F1-T group it recovered to 20.1±0.82 %.

The pancreatic diameter at birth was recorded as 78.3±1.12 μm in F-0 group of mice and this value decreased to 74.6±0.69 μm in group-F1, while in F1-T group it recovered to 77.2±0.61 μm.

The pancreatic diameter at weaning was recorded as 80.4±1.48 μm in F-0 group of mice and this value reduced to 77.4±0.94 μm in group-F1, while in F1-T group it recovered to 79.6±1.10 μm.
Table 1: Comparative assessment of pancreatic mass (G) in F₀, F₁ and F₁-T

<table>
<thead>
<tr>
<th>AGE</th>
<th>F₀</th>
<th>F₁</th>
<th>F₁-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT BIRTH</td>
<td>0.014±0.0003</td>
<td>0.012±0.0005*</td>
<td>0.013±0.0006**</td>
</tr>
<tr>
<td>DAY-7</td>
<td>0.061±0.0008</td>
<td>0.057±0.0010*</td>
<td>0.059±0.0012**</td>
</tr>
<tr>
<td>DAY-14</td>
<td>0.088±0.0007</td>
<td>0.085±0.00010*</td>
<td>0.087±0.0011**</td>
</tr>
<tr>
<td>DAY-21</td>
<td>0.131±0.0017</td>
<td>0.117±0.0015*</td>
<td>0.121±0.0018**</td>
</tr>
<tr>
<td>AT WEANING</td>
<td>0.193±0.0019</td>
<td>0.158±0.0014*</td>
<td>0.161±0.0018**</td>
</tr>
</tbody>
</table>

N= 10; Values are expressed as mean ± SEM; * and ** indicate significance P<0.05 and P<0.001, respectively.

Table 2: Comparative assessment of pancreatic morphometry in F₀, F₁ and F₁-T

<table>
<thead>
<tr>
<th>Islet of Langerhang’s</th>
<th>F₀</th>
<th>F₁</th>
<th>F₁-T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume Density %</td>
<td>20.4±0.79</td>
<td>19.1±0.74</td>
</tr>
<tr>
<td></td>
<td>Diameter (µm)</td>
<td>78.3±1.12</td>
<td>74.6±0.69</td>
</tr>
<tr>
<td>AT BIRTH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volume Density %</td>
<td>20.8±0.67</td>
<td>19.3±0.62</td>
</tr>
<tr>
<td></td>
<td>Diameter (µm)</td>
<td>80.4±1.48</td>
<td>77.4±0.94</td>
</tr>
<tr>
<td>AT WEANING</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N= 10; Values are expressed as mean ± SEM

Statistical analysis showed that Analysis of Variance (ANOVA for single factor) between groups (between treatments) is significant (P<0.05).

Discussion

In this study, it has been noticed that paternal diabetes i.e. when a diabetic male mice mated with a normal female mice, affects the metabolic parameters in F₁ generation. One of the parameters investigated in this experiment was morphometrical assessment of pancreas of male mice. However, First generation offsprings were normoglycemic under control conditions but secrete low levels of insulin compared to their parents (Adeela et al., 2012). The maintenance of glucose levels in F₁ male generation may reflect an increased sensitivity to insulin and a subsequent increase in the glucose uptake by peripheral tissue (Waterland, 2003). Moreover, F₁ groups had significantly smaller and more irregularly shaped islets as compared to F₀ groups. Overall, the F₁ neonatal islets showed a less organized histoarchitecture compatible with a delay in islet maturation. Furthermore, at birth, the islets are normally arranged like pearls on a string (Jensen, 2004), but this structure was not observed in the F₁ offspring. The disorder of endocrine cell types within the islet detected both at birth and weaning hints that islet cell distribution is not altered with age.

Observations of the F₁ generation are consistent with single-generation animal studies (Erlandsen et al., 1976). Diabetes may influence
the epigenetic modification during spermato-
genesis and that these epigenetic dysregulation or
alterations in pancreatic structure cannot be
normalized by providing normal diet, implying
that these changes are transgenerational and may
be inherited through the male germ line and
passed onto more than one generation, which in
turn may increase the risk of diabetes in offspring
(Pinney et al., 2012). These findings also show
that, in the near future, epigenetic factors, which
are inheritable, may be regarded as an important
genetic factors in accessing risk of having
hyperglycemia. Syzigium cumuni stimulates the
secretion of pancreatic insulin and meliorate the
architecture of the pancreatic β-cell in
hyperglycemic experimental animal cells (Sharma
et al., 2008, 2011). These anti-diabetic or
antihyperglycemic characteristics of S. cumuni
seed may be due to a single component or a
combination of phytochemicals, such as
triterpenoids, anthocyanins, oleic acid, essential
oils, glycosides, saponins, and several members of
the flavonoids (e.g., rutin, quercetin, myricetin
(Ramya et al., 2012; Sharma et al., 2011) which
directly or indirectly affect on insulin resistance
and β-cell function.

Conclusion

The outcomes of present research assessment
demonstrates significant efficacy of Syzigium
cumuni i.e. jamun seed powder on pancreatic
morphometry of alloxan monohydrate persuaded
hyperglycemic Swiss albino mice. The effect of
seed powder provokes supplementation in
improving glycemic control and dyslipidemia in
hyperglycemia. Thus, it may emerge as potential
multitargeted drug and play a vital role in
reducing morbidity and mortality associated with
hyperglycemia.

The present outcomes concluded that
Syzigium cumuni seed powder reduces blood
glucose levels in hyperglycemic mice, and also
have rejuvenatory effect on pancreatic islets. The
results of the assessment suggest that the S.
cumuni seed powder can be used as a
supplementary or alternative herbal remedy for
the treatment of hyperglycemia.

The remarkable antihyperglycemic activity as
observed during present research work deserves
further investigations involving constituents of the
S. cumuni seed powder that can be a good platform
for the development of a new horizon for
antihyperglycemic drugs. The results of the
present study suggest that S. cumuni seed powder
can be used as a supplementary or alternative
herbal remedy for the treatment of hyperglycemia
and its related complications. These results
confirmed the use of S. cumuni seed in traditional
system of medicine to treat diabetes. Further
comprehensive chemical and pharmacological
investigations are needed to elucidate the exact
mechanism of antihyperglycemic effect of
Syzigium cumuni seed.

Acknowledgements

I am very much grateful to Prof. M. C. Varma, Ex.
Head, University Dept. of Zoology, T.M. Bhagalpur
University, for his constant guidance,
encouragement and keen interest throughout the
period of my research work. I am obliged to
University Department of Botany, T.M. Bhagalpur
University for furnishing fresh Syzigium cumuni
seed for experiment. I am also thankful to Mr.
Gautam for looking after experimental animals.
Not the least, a special thanks to my beloved
husband with his helping hands.

References

Ayyanar M, Subash-Babu P and Ignacimuthu S. (2013)
Syzygium cumini (L.) Skeels, a novel therapeutic
agent for diabetes: Folk medicinal and
pharmacological evidences. Complem Therap Med.

Male offsprings of both diabetic parents have high
insulin resistance and serum leptin level compared
to those with one diabetic parent. Hormones 7(4):
313-319.

Baliga MS, Fernandes S, Thilakchand KR, D'souza P and
Rao S. (2013) Scientific validation of the antidiabetic

