Antibacterial Activity of Protease and Lipase Enzymes Obtained from *Proteus mirabilis*

Deepa N.*1, Anuanandhi K.1, Sankar D.2, Ashok K.3, Babu M.3 and Usha R.1

1Department of Zoology, Presidency College, Chennai, Tamil Nadu, India
2Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
3Department of Microbiology and Biotechnology, Faculty of Arts and Science, Bharath Institute of Higher Education and Research, Chennai-600073, Tamil Nadu, India

*Corresponding Author

Received: 30th August, 2021; Accepted: 19th September, 2021; Published online: 23rd September, 2021

https://doi.org/10.33745/ijzi.2021.v07i02.040

Abstract: Proteases and lipases are the major metabolism enzymes. They undergo a number of chemical reactions and are responsible for many aspects of bacterial cell life and pathogenicity. However, unlike the proven ability to target proteins and lipases in other aspects of drug detection, the clinic does not have any protein antibiotics or lipase inhibitors, except for the biosynthetic peptidoglycan and transpeptidase, which is β-lactic acid. In addition, the importance of proteases in bacterial etiology makes it possible to avoid selecting targets for new antiviral drug agents. Therefore, bacterial proteins and lipases have not been studied, and they are among the best pioneers deserving continued effort in the discovery of antibacterial drugs in the 21st century.

Keywords: Proteases, Lipases, *Proteus mirabilis*, *Pseudomonas aeruginosa*, Antibacterial

https://doi.org/10.33745/ijzi.2021.v07i02.040

Introduction

The manufacturing of lipase by microbial cells involves the presence of lipids, including olive oil or some other inducer, such as triacylglycerols, fatty acids and tweens in the growth media (Paetzel et al., 2002; Akiyama et al., 2015; Emiola et al., 2015; Brown and Wright, 2016; Culp and Wright, 2017). Olive product is known as the most appropriate lipid substrate because it has the drawback of including high doses of oleic acid and is much more economical (Moayeri et al., 2015). Some researchers have studied crude and purified lipases. Various factors such as pH, atmospheric pressure, metallic ions, organic solvents, among many others, may speed up or slow down lipase activity (Hedstrom, 2002; Powers et al., 2002; Brik and Wong, 2003; Zambelloni et al., 2015; Hauser et al., 2016; Huber et al., 2016).

Hence, the present investigation was designed to ascertain the optimization and growth condition of bacterial strains to enhance the production of extracellular protease and lipase enzymes. The primary aim of this study was to
evaluate protease and lipase produced by bacterial strains from samples collected and to determine the optimum enzyme activity by the selected potent bacterial isolates. There are many reports on the concomitant production of protease and lipase by *Pseudomonas* species and *Bacillus* species but there are no reports on *Proteus mirabilis* which can produce both enzymes simultaneously.

Materials and Methods

The bacterial protease and lipase enzyme obtained from *Proteus mirabilis* was used for antibacterial activity (Leung et al., 2011). Three different concentrations of enzyme solution (10 µl, 20 µl, 30 µl/disc) were evaluated for antimicrobial properties toward pathogenic bacterial species such as *Staphylococcus aureus*, *Bacillus subtilis*, *Bacillus cereus*, *Pseudomonas aeruginosa* and *Escherichia coli*. Bacterial cultures have been raised in Muller Hinton Agar and Muller Hinton broth. The content was observed using the standard approach of disseminating disc plates on agar. Then 0.1 ml of each bacterial culture was scattered to agar plate floors for antimicrobial test. All bacterial cultures were grown in Muller Hinton Broth Medium for 24 h at 37 C and loaded in Muller Hinton Agar for agar well diffusion experiments. HiMedia sterile discs (6 mm in diameter) were placed on the agar medium in different concentrations (10 µl, 20 µl, 30 µl/disc) of partially purified protease and lipase enzyme (*Proteus mirabilis*) were tested separately. The Inhibition diameters were measured in millimeters (mm) on all plates. All experiments were repeated three times. Gentamicin (10 µg/disc) was used as positive control incubated for 24 h at 37 C.

Results and Discussion

Antibacterial activity of extra-cellular protease enzyme isolated from *Proteus mirabilis* was assessed and the data are shown in Table 1. It is interesting to note that the 10 µl concentration did not showed any inhibitory activity, whereas, 20 µl concentration of extra-cellular protease enzyme inhibited the growth of bacterial species tested in the present investigation. 23.67 mm zone of inhibition was observed against the *B. subtilis*, 22.00 mm zone of inhibition was observed against *S. aureus* and 14.00 mm of inhibition was noted against *Bacillus cereus* at 20 µl concentrations. The same concentration did not show any antibacterial activity against *E. coli* and *P. aeruginosa* (Table 1). Further, the 30 µl concentration of extra-cellular protease enzyme activity showed highest inhibition zone (28.00 mm) against *B. subtilis*; 25.67 mm inhibition zone against *S. aureus*; 16.00 mm inhibition zone against *B. cereus* and inhibition of the development of *E. coli* and *P. aeruginosa* to a lesser extent i.e., 12.00 and 11.33, respectively (Table 1; Figs. 1A-C).

Fig. 1: (A) Zone of inhibition observed with the protease enzymes against from *Bacillus subtilis*, (B) Zone of inhibition observed with the protease enzymes against from *Bacillus cereus*, (C) Zone of inhibition observed with the protease enzymes against from *Staphylococcus aureus*, (D) Zone of inhibition observed with the lipase enzymes against from *Bacillus subtilis*, and (E) Zone of inhibition observed with the lipase enzymes against from *Staphylococcus aureus*.

Antimicrobial properties of the partially purified enzyme lipase:

Antibacterial activity of extra-cellular lipase enzyme isolated from *P. mirabilis* was analyzed and the data are shown in Table 2. It is remarkable to note that the 10 µl of lipase enzyme against *B. cereus* showed 10.33 mm the inhibitory activity, whereas, 20 µl concentration of extra-cellular lipase enzyme inhibited the growth of bacterial species tested in the present investigation. 23.67 mm zone of inhibition was observed against the *B. subtilis*, 22.00 mm zone of inhibition was observed against *S. aureus* and 14.00 mm of inhibition was noted against *Bacillus cereus* at 20 µl concentrations. The same concentration did not show any antibacterial activity against *E. coli* and *P. aeruginosa* (Table 1). Further, the 30 µl concentration of extra-cellular protease enzyme activity showed highest inhibition zone (28.00 mm) against *B. subtilis*; 25.67 mm inhibition zone against *S. aureus*; 16.00 mm inhibition zone against *B. cereus* and inhibition of the development of *E. coli* and *P. aeruginosa* to a lesser extent i.e., 12.00 and 11.33, respectively (Table 1; Figs. 1A-C).
Table 1: Antibacterial properties of the slightly purified enzyme protease

<table>
<thead>
<tr>
<th>Partially purified Protease enzyme</th>
<th>Control 10 µl</th>
<th>10 µl</th>
<th>20 µl</th>
<th>30 µl</th>
<th>F value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>26.67±0.88 c</td>
<td>0.00±0.0</td>
<td>23.67±0.88 b</td>
<td>28.0±0.58 c</td>
<td>367.902</td>
<td><0.001**</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>28.00±0.58 c</td>
<td>0.00±0.0</td>
<td>0.00±0.0</td>
<td>12.00±0.58 b</td>
<td>1056.00</td>
<td><0.001**</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>24.00±0.58 c</td>
<td>0.00±0.0</td>
<td>22.00±0.58 b</td>
<td>25.67±0.67 c</td>
<td>521.700</td>
<td><0.001**</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>17.33±0.67 c</td>
<td>0.00±0.0</td>
<td>14.00±0.58 b</td>
<td>16.00±0.58 c</td>
<td>230.800</td>
<td><0.001**</td>
</tr>
<tr>
<td>Pseudomonas aerugenosa</td>
<td>24.67±0.88 c</td>
<td>0.00±0.0</td>
<td>0.00±0.0 a</td>
<td>11.33±0.88 b</td>
<td>353.905</td>
<td><0.001**</td>
</tr>
</tbody>
</table>

Values represent mean ± S.E of three replicates. Values with different alphabet in the column differs statistically, i.e., significant at p<0.005%

Table 2: Antibacterial activity of partially purified lipase enzyme

<table>
<thead>
<tr>
<th>Partially purified lipase enzyme</th>
<th>Control 10µl</th>
<th>10 µl</th>
<th>20 µl</th>
<th>30 µl</th>
<th>F value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>26.67±0.88 c</td>
<td>0.00±0.0</td>
<td>22.33±0.33 b</td>
<td>25.33±0.88 c</td>
<td>376.244</td>
<td><0.001**</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>26.00±1.15 c</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>10.67±0.33 b</td>
<td>418.769</td>
<td><0.001**</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>25.67±1.20 c</td>
<td>0.00±0.00</td>
<td>22.00±0.58 b</td>
<td>25.00±0.58 c</td>
<td>282.737</td>
<td><0.001**</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>17.00±0.58 b</td>
<td>10.33±0.33 a b</td>
<td>8.67±4.37 a</td>
<td>15.00±0.58 a b</td>
<td>3.060</td>
<td>0.092</td>
</tr>
<tr>
<td>Pseudomonas aerugenosa</td>
<td>24.33±0.88 c</td>
<td>0.00±0.00</td>
<td>0.00±0.0</td>
<td>12.00±0.58 b</td>
<td>487.300</td>
<td><0.001**</td>
</tr>
</tbody>
</table>

Values represent mean ± S.E of three replicates. Values with different alphabet in the column differs statistically, i.e., significant at p<0.005%

cellular lipase enzyme inhibited the growth of bacterial species tested in the present investigation. 22.33mm zone of inhibition was observed against the B. subtilis, besides, 22.00mm zone of inhibition was observed against S. aureus and 8.67mm of inhibition was noted against B. cereus at 20 µl concentration. The same concentration did not show any antibacterial activity against E. coli and P. aerugenosa (Table 2). Further, the 30 µl concentration of extra-cellular lipase enzyme activity showed highest zone of inhibition (25.33 mm) towards B. subtilis; 25.00 mm diameter of inhibition zone towards S. aureus; 15.00 mm zone of inhibition against B. cereus and the growth of P. aerugenosa and E. coli were inhibited to a lesser zone of inhibition i.e., 12.00 mm and 10.67 mm, respectively (Table 2; Figs. 1D, E).

Conclusion

The isolated lipase and protease enzymes have been evaluated for antibacterial activities. Perusal of the data clearly indicates that there was a remarkable antibacterial activity. Earlier to this study there exists no report to support the present findings. Thus, the present investigation is first report regarding the antibacterial activity of lipase and protease enzymes.

References

