Ameliorative Effect of Red Grape Seed Extract (Vitis vinifera L.) on Memory Deficits and Acetylcholinesterase Activity in D-Galactose-Induced Albino Rat

Veera Nagendra Kumar D., Seethamma G., Sachidevi P., Ramesh Kumar P., Usha Rani K. and Uday Kiran V.*

1Dept. of Zoology, Govt. College for Men (A) – Kadapa, A.P., India
2Department of Zoology, KVR Government College for Women (A), Kurnool, India
3Department of Zoology, SKR and SKR Government Degree College for Women (A), Kadapa, India
4Dept of Zoology, Govt. Degree College, Paderu, Alluri Sitharamaraju (Dt), A.P., India
5Dept of Zoology, DNR (A) College, Bhimavaram W.G., A.P., India
6Dept of Zoology, Loyola Degree College (YSRR) Pulivendula, A.P., India

*Corresponding Author

Received: 16th December, 2022; Accepted: 21st January, 2023; Published online: 3rd February, 2023
https://doi.org/10.33745/ijzi.2023.v09i01.023

Abstract: The objective of this study was to see how administration of Red Grape Seed Extract (RGSE) affected memory and Acetylcholinesterase (AChE) activity in D-Galactose-induced Albino rats’ Cerebellum, Cerebral Cortex, Hippocampus, and Pons Medulla. Four groups of six animals were formed. D-Galactose, RGSE, and D-Gal+ RGSE groups were studied. After 30 days of RGSE therapy, the animals were subjected to behavioural tests before being euthanized and their brain structures and blood were collected. The D-Galactose group demonstrated a decrease in step-down latency. D-Galactose-induced memory impairment was prevented by the RGSE group. In the open field test, there were no discernible differences between the groups. When compared to the control group, the D-galactose group displayed significantly higher AChE activity in all regions of the brain. However, AChE activity decreased significantly in the RGSE groups in the Cerebellum, Cerebral cortex, Hippocampus, and Pons medulla, whereas no significant alterations were seen in the combined therapy groups in any brain tissue when compared to the control group. Finally, the current data revealed that RGSE therapy inhibits the increase in AChE activity and, as a result, memory impairment in Albino rats, suggesting that this molecule can alter cholinergic neurotransmission and, as a result, improve cognition.

Keywords: Red Grape Seed Extract, Memory, Acetylcholinesterase, D-Galactose, Albino Rats, Cerebellum, Cerebral cortex, Hippocampus, Pons medulla

https://doi.org/10.33745/ijzi.2023.v09i01.023

This is an Open Access Article licensed under a Creative Commons License: Attribution 4.0 International (CC-BY). It allows unrestricted use of articles in any medium, reproduction and distribution by providing adequate credit to the author(s) and the source of publication.

Introduction
Cholinergic neuron degeneration in the cerebral cortex and subcortical regions is regarded to be the root cause of neurological diseases and cognitive impairments (Francis and Craig, 2020).
A connection between the cholinergic system and cognition has emerged from a number of exploratory studies. Experimental damage to the basal forebrain cholinergic system and muscarinic antagonist treatment of animals result in memory problems (Tarciana et al., 2022). Acetylcholinesterase over expression in transgenic rats has been found to cause a gradual cognitive loss (Vanessa et al., 2022), cholinergic stimulation on the other hand can improve cognitive performance in both animals and humans (Jennifer abd David, 2020). These results confirm acetylcholine's critical function in cognition and imply that cholinomimetic chemical replacement therapy may help patients with cognitive and memory problems brought on by neurological disease. These deficits have primarily been characterised by modest deficits in learning and memory, psychomotor slowness, and decreased mental flexibility (Sela et al., 2022). The only class of medications that has been consistently demonstrated to be beneficial in treating the cognitive and functional symptoms of neurological disorders are cholinesterase inhibitors (Jill et al., 2019). Treatment for neurological diseases is centred around cholinesterase inhibitors, of which four have been licenced for the symptomatic management of mild to moderate neurological diseases. These include galantamine, donepezil, rivastigmine, and tacrine, which are all aminoacridines (a tertiary alkaloid). Clinical differentiation between these medications may be based on differences in their tolerability profiles and ease of administration because they seem to have comparable efficacy (Jill et al., 2019). Because acetylcholinesterase is more selective than butyrylcholinesterase, cholinesterase inhibitors’ tolerability profiles may vary (Gallagher et al., 2020). There are some signs that butyrylcholinesterase activity could be connected to the aetiology of neurological illness (Chaudhuri et al., 2019). As a result, it has been hypothesised that nonselective cholinesterase inhibitors, which inhibit both butyrylcholinesterase and acetylcholinesterase, may be more helpful to persons with neurodegenerative diseases than selective cholinesterase inhibitors, which only inhibit acetylcholinesterase (Jill et al., 2019). The relative importance of acetylcholinesterase versus butyrylcholinesterase inhibition in peripherally (salivation) and centrally (brain acetylcholine levels and tremor) mediated cholinergic responses to cholinesterase inhibitors was examined.

Red Grape Seed Extract (RGSE) is a rich source of polyphenols, anthocyanins, and proanthocyanins, which are primarily found in red wine and grapes and have a variety of biological activities that have been established, including roles as an antioxidant, anti-inflammatory, cardioprotective agent, and anticarcinogen (Zhihao et al., 2018). Recent research on the neuroprotective properties of resveratrol and grape phytochemicals has shown that these compounds reduce the toxicity caused by amyloid peptides (Han et al., 2020; Fatemeh et al., 2021), guard against cerebral ischemic injury (Aytac et al., 2022), and protect against kainic acid-induced excitotoxicity (Aytac et al., 2022). The powerful antioxidant activity of RGSE, which in numerous studies has been demonstrated to protect the neural tissue against a range of neurodegenerative disorders brought on by oxidative stress, has been attributed to several neuroprotective qualities of RGSE (Garrab et al., 2019; Aydin and Ates, 2020).

The objective of the present investigation was to assess the protective effects of grape seed extract on the cholinergic system in the brain tissue of rats with memory defects.

Materials and Methods

Procurement and Care of Experimental Animals:

Healthy Wistar strain Albino rats (Rattus norvegicus; 3 months, 160 ± 20 g b wt) were obtained from Sri Venkateswara Enterprises in Bangalore and used as the experimental model in this study. According to Behringer’s instructions, the rats were acclimated before the trial (Behringer’s, 1973). They were kept in polypropylene cages in the Department of Zoology’s animal house under carefully controlled conditions (28 °C temperature, 12 h photoperiod,
Table 1: Treatment schedule

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (Control)</td>
<td>Control Rat received with normal saline</td>
</tr>
<tr>
<td>II (AD)</td>
<td>D-Gal was intraperitoneally (IP) delivered to rats from the first day to the 60th day of the experiment (Zhang et al., 2006; Hua et al., 2007).</td>
</tr>
<tr>
<td>III (RGSE)</td>
<td>Rat, orally administered with Red grape seed ethanol extract (100 mg/kg bodyweight) for 30 days.</td>
</tr>
<tr>
<td>IV (AD+RGSE)</td>
<td>Rat, intraperitoneally injected with D-Gal (120 mg/kg body weight) once daily for first 30 days. From 31st day onwards rats were administered with Red grape seed ethanol extract (100 mg/kg body weight) for 30 days.</td>
</tr>
</tbody>
</table>

and 75% relative humidity). The rats were kept on a regular pellet diet provided by Sri Venkateswara Enterprises, Bangalore, and were given unlimited access to water.

Preparation of Grape Seed Extract:

Grape (Vitis vinifera (L.), as large clusters with red berries, was bought from a local fruit market in Tirupati, Pulivendula and Bangalore (Devanahalli). Seeds were removed from the grapes, air dried (in shade) for one week and milled to fine powder (a particle size of < 0.4 mm). The grape seed powder was macerated in 75% ethanol for 72 h at room temperature. The ethanol extract was evaporated to remove ethanol, and grape seed extract was obtained as a lyophilized powder (Alireza et al., 2007). The resulting ethanolic crude extract was air dried and used in the present study.

Experimental design:

The rats were randomly separated into four groups after becoming adjusted to the laboratory environment for 10 days before start of the experiment. Each group was divided into two subgroups of six each, each major group was kept in a separate cage. Red grape seed ethanol extract and D-Gal were administered in the following dosages to the several groups of rats, except the control group. All doses were administered once between 8 and 9 a.m., taking into account the fact that rats behave differently at night compared to the day.

The experimental period in the current study was 60 days (Table 1). D-Gal was administered to rats for the first 30 days so that AD symptoms could be seen and their cognitive abilities could be evaluated (AD group). Additionally, D-Gal and Red grape seed ethanol extract were administered to AD-induced Rat at the same time.

Experimental induction of Memory Disorder:

10 mg/kg of D-Galactose, diluted in 1.5 ml of normal saline, was administered intraperitoneally to generate Memory dysfunction. Normal saline was administered in the same quantity to the age-matched control rats. To lower hypoglycemia shock-related deaths, rats treated with D-Gal were given 5% glucose for 24 h instead of water after inducing memory loss.

Treatment with RGSE:

Six rats from each group were randomly assigned to the Control group, D-galactose group, RGSE group, and D-gal+RGSE group. The animals from the control group and the D-Gal group got 10 mg/kg of RGSE orally through oral gavage one week after the induction of memory impairment. The animals from the control group and the D-Gal group received saline solution orally instead of the 10 mg/kg of RGSE. A dose of RGSE that did not exceed 0.1 ml/100 g of rat weight was given once daily for 30 days, between 10 and 11 a.m., freshly prepared in 75% ethanol.

Results

Acetylcholinesterase (AChE):

The activity levels of the enzyme AChE showed a quite opposite trend to that of ACh content. AChE levels were drastically increased in AD-I group when compared to Controls. However,
Table 2: AChE values in different brain regions of four groups animals

<table>
<thead>
<tr>
<th>Mean ± SD</th>
<th>Acetylcholinesterase (AChE) -Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cerebral Cortex</td>
</tr>
<tr>
<td>Control</td>
<td>7.530 ±0.36</td>
</tr>
<tr>
<td>AD</td>
<td>8.69±0.45</td>
</tr>
<tr>
<td>RGSE</td>
<td>5.272±0.28</td>
</tr>
<tr>
<td>AD+RGSE</td>
<td>7.89±0.41</td>
</tr>
</tbody>
</table>

administration of RGSE to AD-I group could reverse AD induced effect and thus restored the AChE levels which were more than the controls. Hence, RGSE might be acting as a pro-cholinesterase compound by boosting its levels.

From the Experimental values revealed that the Hippocampus (12.30 μmoles of ACh hydrolyzed/mg protein/h) had the highest level of AChE activity in control groups of rats, followed by the Cerebellum(CB), Cerebral Cortex(CC) and Pons Medulla(PM), (7.30, 7.53 and 10.47 μ moles of ACh hydrolyzed/mg protein/h). The Cerebellum had a higher level of AChE content (17.26%) in the AD-induced group, while the Cerebral Cortex had a lower level of AChE content (15.40 %). When rats were treated with RGSE and D-Galactose, the Cerebral Cortex (4.78 %) showed a larger per cent change than the Pons Medulla (-10.79 %).

Discussion

Cognitive dysfunctions brought on by D-Gal induction are accompanied by CNS structural and neurophysiological alterations (Biessels et al., 2008). Additionally, polyphenolic substances have recently drawn a lot of attention because it has been demonstrated that they can shield neurons from a number of experimental neurodegenerative diseases, such as diabetes-related cognitive deficits (Biessels et al., 2008). Although some researchers have looked into the neuroprotective benefits of RGSE in animal models of memory disorders (Aydin and Ates, 2020), there is no information in the literature about this compound's effects on cholinergic neurotransmission. Thus, in the current investigation, rats with D-Gal-induced memory impairment were used to examine how this polyphenol affected memory and AChE activity. In our investigation, we found that memory dysfunction rats showed a significant reduction in step-down latency during the inhibitory avoidance test, suggesting that these animals may have learning and memory impairment. These results suggest that RGSE therapy can prevent learning and memory loss brought on by memory dysfunction in rats. It has been established that AChE plays a fundamental role in learning and memory (Faruk et al., 2013) and changes in its activity as well as in the level of the neurotransmitter acetylcholine are neurochemically linked with cognitive deficits seen in patients and in animal models of memory dysfunction. However, the precise mechanism by which D-Gal affects cognitive functions is still not fully understood. In the current study, we found that memory-impaired rats' AChE activity increased throughout all analysed brain areas (Cerebral cortex, Hippocampus, Pons medulla and Cerebellum). Cerebellum and the Hippocampus showed a less dramatic rise. The functional variability in the central cholinergic system may be reflected in the lack of uniformity in the AChE profile. Choline acetyltransferase-containing neurons can be found almost everywhere in the central nervous system. The membrane's integrity.
and permeability variations during synaptic transmission and conduction are caused by AChE, a key biological component of the membrane. Depending on the anatomical area, the G4 form makes about 60–90% of the total AChE in the mammalian brain whereas the remaining portion is made up of G1 and G2 forms. Based on these findings, we can hypothesise that oxidative stress and subsequent free radical generation in various brain regions may operate as a mediating factor in the AChE activation seen in memory impairment in Rat.

The findings of the present study showed that diabetic rats had impaired memory and learning, which was accompanied by a substantial increase in AChE activity throughout the entire brain.

Acknowledgements
Authors extend thanks to the Coordinator, Department of Zoology, Sri Venkateswara University, Tirupati’s DBT supported Bioinformatics Infrastructure Facility for providing computer lab facility to perform this research.

References

https://doi.org/10.1111/arcm.12806.