Antibacterial Activity of Green Synthesis Gold Nanoparticles from *Lantana camara* Aqueous Extract

Sheela D., Indra V., Arunagirinadhan N. and Abdul Rahim M.

1Department of Zoology, Presidency College, Chennai, Tamil Nadu, India
2Central Research Laboratory, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, Tamil Nadu, India

*Corresponding Author

Received: 3rd November, 2021; Accepted: 2nd December, 2021; Published online: 7th December, 2021

https://doi.org/10.33745/ijzi.2021.v07i02.071

Abstract: The reduction of aqueous gold metal ions in contact with the aqueous leaves extract of the plant *Lantana camara* results in the formation of gold nanoparticles (AuNPs). Using UV-visible spectroscopy, an absorption peak of gold nanoparticles may be seen at 559 nm. The intensity of the peak (111) at 38.3° diffraction was considerably higher than that of the peaks 200 and 220 at 44.3° and 45.4° planes, respectively, indicating that AuNPs were successfully synthesised. HR-TEM is used to measure mostly spherical particles with sizes ranging from 5 to 50 nm. The FTIR data show that the peaks observed are closely linked to polyphenols, indicating that they may operate as a reducing agent. The antibacterial activity of AuNPs showed the maximum and minimum zone of inhibition. *Staphylococcus aureus* had a greater zone of inhibition in 40 mg/ml, while *Enterococcus* had lower zone of inhibition in ATCC culture while clinical strains of *Staphylococcus aureus* alone had a greater zone of inhibition when compared to other species. Based on the results, it was concluded that AuNPs could be used to combat antibiotic drug resistance.

Keywords: AuNPs, *Lantana camara*, HR-TEM, FT-IR, UV-Viz, Phytochemical, Antibacterial activity

Introduction

Nanotechnology is the study of nanoscale materials with dimensions ranging from 1 to 100 nm and their applications (Currall *et al.*, 2006). Noble metal nanoparticles have received a lot of interest because of their unique catalytic, electrical, and optical characteristics (Joshi *et al.*, 2008). Because of its distinctiveness, gold nanoparticles (AuNPs) have received a great deal of attention, particularly in biomedication (Baruah and Dutta, 2009). The diverse surface functionality of AuNPs facilitates nanobiological attachment of AuNPs to drugs (DeRosa *et al.*, 2010, Rakonjac *et al.*, 2011), oligonucleotides (Scheunert *et al.*, 2016, Wiesner and Bottero, 2017), antibodies (Mitter and Hussey, 2019, Bayda *et al.*, 2020), and protein (Rana *et al.*, 2020). Due to their optical properties, Au-NPs can also be used as a marking agent in bioimaging (Mitter and Hussey, 2019). Despite the
popularity and development of chemical and physical methods for manufacturing nanoparticles, there is need to design environmentally acceptable procedures that do not entail the use of hazardous compounds particularly for medicinal purposes (Bayda et al., 2020). To decrease the risks to the environment and humans, synthesis methods that employ natural products as reducing agents require further attention. Greener substrates, such as enzyme (Rana et al., 2020), fungus (El-Sayed and Kamel, 2020), and algae (Aleixandre-Tudo et al., 2020, Svendsen et al., 2020), have been reported to successfully produce Gold nanoparticle. However, in comparison to the challenges encountered in microbe-assisted synthesis (Lateef et al., 2021), plant-mediated synthesis is gaining attraction due to the simplicity with which nanoparticles may be handled and controlled in size and form. Plant-based synthesis is reasonably quick and safe and it may be performed in a room environment without the need for significant physical requirements (Gomez-Marquez and Hamad-Schifferli, 2021). Every part of the plant has been shown to be beneficial, particularly the leaves (Guo and Cui, 2021; Macedo et al., 2021; Park et al., 2021; Salamanca-Buentello and Daar, 2021).

Although few studies have focused on herbal plants (Gottardo et al., 2021). Plants have provided efficient chemotherapeutic treatments for a variety of infectious illnesses, and there is a rising interest in the creation of plant-derived medicines. Many cultures in East Africa, and particularly Uganda, have long used plants to cure a variety of illnesses, including respiratory tract infections. Some believe that they can genuinely treat TB (Ogendo et al., 2003). Lantana camara is one of the plants that has been claimed to treat tuberculosis and is commonly utilised in regions of South-western Uganda. L. camara is a shrub that belongs to the Verbanaceae family. It is thought to have originated in the Americas' tropics, but it is now found in many African nations, including some dry places, and is common in Kenya, Uganda, and Tanzania after being introduced as an ornamental plant around 300 years ago (Ogendo et al., 2003; Pereira et al., 2003; Qamar et al., 2005; Verma and Verma, 2006; Sonibare and Effiong, 2008). It is very invasive and has taken over a substantial portion of the vegetative cover since it has been introduced. Its expansion endangers other forms of biodiversity.

L. camara has been used for a variety of purposes. It is mostly used as a herbal remedy as a source of microbicides, fungicides, nematicides, insecticides, but it has also been recorded to be utilised as a source of firewood, mulch, hedges. (Gooden et al., 2009; Ghosh et al., 2010; Sathish et al., 2011; Bhagwat et al., 2012; Naz and Bano, 2013). The leaves of the plant are chewed with rock salt and the extract is ingested in traditional usage in South-western Uganda, or they are crushed raw or baked, combined with rock salt, and the extract is used orally for cough therapy. Chemical compounds extracted from L. camara leaf extracts have been found to have antimicrobial, fungicidal, insecticidal, and nematocidal action (Kumar et al., 2014; Ajitha et al., 2015; Kumar et al., 2015). There are also claims that lantana chemicals extracted from leaf extracts can be used as weed killers and have been tried with some effectiveness against water hyacinth. It is also claimed that verbacoside, a chemical derived from lantana extract, has antimicrobial, immunosuppressive, and anti-tumour properties (Swamy et al., 2015; Tadesse et al., 2017; Bandi et al., 2018).

It has been reported that lantana oil can be used to cure skin itchies, as an antiseptic for wounds, and as an external therapy for leprosy and scabies (Aritonang et al., 2019; Liu et al., 2019; Chowdhury et al., 2020; Devi and Khwairakpam, 2020). Lantana extracts are used in folk medicine to treat malignancies, chicken pox, measles, asthma, ulcers, swellings, eczema, tumours, high blood pressure, bilious fevers, catarrhal infections, tetanus, rheumatism, malaria, and atoxy of abdominal viscera (Etuh et al., 2021;
Kato-Noguchi and Kurniadie, 2021; Anwar et al., 2021; Delgado-Altamirano et al., 2021). The main task of this study is threefold. For growth inhibition the bacteria chosen is the Gram-positive and Gram-negative bacteria such as Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Enterobacter, Staphylococcus aureus and Enterococcus faecalis. To the best of our knowledge, no study has been published on the use of the Lantana camara in the production of AuNPs or other metal nanoparticles. We show the production and characterisation of AuNPs using Gold (III) chloride hydrate and aqueous Lantana camara leaves extract and also we have identified the antibacterial potential of the green synthesized nanoparticles against the clinical strains and ATCC strains.

Materials and Methods

The plant leaves of Lantana camara (Fig. 1) were collected from Valasamalai Kundru, Tiruvanamalai District Tamilnadu, India and were identified and authenticated by Prof. P. Jayaraman, Plant Anatomy Research Centre (PARC) West Tambaram Chennai, Tamilnadu, India.

![Fig. 1: L. camara.](image)

Qualitative Phytochemical Analysis:

Qualitative Screening of phytochemicals present in the plants Lantana camara were analysed according to the methods of Kamal (2014).

Test for Acids:

Millon’s Test: To 1.0 ml extract, five drops Millon’s reagent was added, heated on a water bath for 5 min and allowed to cool, followed by addition of 1% sodium nitrite solution. Formation of red colour indicates the presence of acids.

Test for Alkaloids:

Mayer’s Test: To 2.0 ml extract, 2.0 ml concentrated hydrochloric acid followed by few drops Mayer’s reagent were added. Presence of green colour or white precipitate indicates the presence of alkaloids.

Test for Anthocyanin and Betacyanin:

Sodium Hydroxide Test: To 2.0 ml extract, 1.0 ml 2N sodium hydroxide was added and heated for 5 min at 100 C. Formation of bluish green colour indicates the presence of anthocyanin and yellow colour shows the presence of betacyanin.

Test for Carbohydrates:

Molisch’s Test: To 2.0 ml extract, 1.0 ml Molisch’s and few drops of concentrated sulphuric acid were added. Formation of purple or reddish ring indicates the presence of carbohydrates.

Test for cardiac glycosides:

Ferric Chloride Test: To 0.5 ml extract, 2.0 ml glacial acetic acid and few drops 5% ferric chloride were added. This was under layered with 1.0 ml concentrated sodium hydroxide. Formation of the brown ring at the interface indicates presence of cardiac glycosides.

Test for Coumarins:

Sodium Hydroxide Test: To 1.0 ml extract, 1.0 ml 10% sodium hydroxide was added. Formation of yellow colour indicates presence of coumarins.

Test for Flavonoids:

Sulphuric Acid Test: 1.0 ml extract was treated with few drops of concentrated sulphuric acid and observed for the formation of orange colour, which indicates the presence of flavonoids.

Test for Glycosides:

Sulphuric Acid Test: To 2.0 ml extract, 1.0 ml glacial acetic acid, 5% ferric chloride and few
drops concentrated sulphuric acid were added. Presence of greenish blue colour indicates the presence of glycosides.

Test for Phenols:

Ferric Chloride Test: To 1.0 ml extract, 2.0 ml distilled water, followed by few drops 10% ferric chloride were added. Formation of blue or green colour indicates presence of phenols.

Test for Proteins:

Ninhydrin Test: To 2.0 ml extract, few drops 0.2% ninhydrin was added and heated for 5 min. Formation of blue colour indicates the presence of proteins.

Test for Quinones:

Sulphuric Acid Test: To 1.0 ml extract, 1.0 ml concentrated sodium hydroxide was added. Formation of red colour indicates the presence of quinones.

Test for Saponins:

Foam Test: To 1.0 ml extract, 5.0 ml distilled water was added and shaken well in a graduated cylinder for 15 min lengthwise. Formation of 1.0 cm layer of foam indicates the presence of saponins.

Test for Starch:

Iodine Test: To 2.0 ml extract, few drops iodine solution was added. Formation of blue-purple colour indicates the formation of starch.

Test for Steroids:

Salkowski Test: To 5.0 ml extract, 2.0 ml chloroform and few drops concentrated sulphuric acid were added. Formation of red colour indicates the presence of steroids.

Test for Tannins:

Ferric Chloride Test: To 1.0 ml extract, 2.0 ml 5% ferric chloride was added. Formation of dark blue or greenish black indicates the presence of tannins.

Test for Terpenoids:

Sulphuric Acid Test: To 0.5 ml extract, 2.0 ml chloroform was added and to this, concentrated sodium hydroxide was added carefully. Formation of red brown colour at the interface indicates presence of terpenoids.

Test for Triterpenoids:

Libemann-Buchard Test: To 1.5 ml extract, few drops Libemann-Buchard reagent (acetic anhydride and concentrated sodium hydroxide) was added. Formation of blue green colour indicates presence of triterpenoids.

Preparation of Lantana camara leaf extracts using solvents:

Fresh leaves of L. camara were collected and washed thoroughly using running tapwater and then finally washed with double distilled water, shade dried at room temperature to remove moisture. Then the dried leaves were ground into fine powder using hand blender. The powdered leaves were used for Green Synthesis of Gold Nanoparticles.

Green Synthesis of Gold Nanoparticles:

To 1g of fine powdered leaves, 10 ml of distilled water were mixed in 50 ml of beaker. The mixture was boiled for 30 min and stirred in a magnetic stirrer at 700 rpm. The aqueous leaves extract obtained were filtered using Whatman No.1 filter paper. To the 5 ml of aqueous leaves extract, 45 ml of 1 mM Gold (III) chloride hydrate aqueous solution was added. Colour change was observed which indicates the reduction of Au$^+$ ions to Au0. The gold nanoparticles formed were centrifuged at 15000 rpm for 30min at 37 C. The supernatant were discarded and then fine sediment pellets were centrifuged again with distilled water to eliminate any biomaterials that could interfere with the construction of the synthesized Gold Nanoparticles (AuNPs).

Characterization of green synthesized Gold Nanoparticles (AuNPs):

UV–Visible spectral analysis:
The colour change was observed in the Gold (III) chloride hydrate solution incubated with *L. camara* leaf aqueous extract. The bio-reduction of ions Gold (III) chloride hydrate in solution was monitored by periodic sampling of aliquots (0.1 ml) of aqueous component and measuring the UV–Vis spectra of the solution in 10-mm-optical-path-length quartz cuvettes with an UV-2600, SHIMADZU spectrophotometer at a resolution of 1 nm between 300 and 800 nm with a scanning speed of 1856 nm/min. The AuNPs solution was diluted with deionized water to avoid errors due to high optical density of the solution.

Fourier Transform Infra-Red (FT-IR) spectroscopy:

For FT-IR measurements, the bio-reduced Gold (III) chloride hydrate solution was centrifuged at 10,000 rpm for 15 min and the pellet was washed with deionized water to get rid of the free proteins/enzymes that were not capping the gold nanoparticles. The samples were dried and ground well with KBr pellets and analysed on aIR Tracer-100, SHIMADZU spectrum one instrument in the diffuse transmittance mode operating at a resolution of 4 cm\(^{-1}\) over 3800–600 cm\(^{-1}\). In order to obtain a good signal/noise ratio, 512 scans were recorded.

X-ray diffraction (XRD) studies:

The bio-reduced Gold (III) chloride hydrate solution was drop-coated onto glass substrate and powder X-ray diffraction measurements were carried out on a PANalytical X'pert PRO X-ray diffractometer. The pattern was recorded by Cu K\(_{\lambda1}\) radiation of 1.5406Å and nickel monochromatic filtering the wave at tube voltage of 40 kV and tube current of 30 mA. The scanning was done in the region from 30 C to 80 C at 0.02/min and the time constant was 2 sec.

High Resolution Transmission Electron Microscopy (HR-TEM) with SADE:

Colloidal suspensions of AuNPs were ultrasonicated for 15 min and analysed using JEOL-1200EX TEM (Tecnai™ G2 20 U-Twin) operating at 80 kV.

Antibacterial Activities:

To observe the antibacterial potential of *Lantacamara* green synthesized Gold Nanoparticles (AuNPs) against human pathogenic bacteria such as--

Clinical strains - *E. coli, K. pneumonia, P. aeruginosa, S. aureus, Efaecalis and Enterobacter.*

ATCC *E. coli* (25922), *K. pneumonia* (13883), *P. aeruginosa* (25873), *Staphylococcus aureus* (25923), *E. faecalis* (29212) and *Enterobacter* (200321) culture were used in this study using well diffusion method (Vijilvani et al., 2020).

Results and Discussion

Gold nanoparticle (AuNPs) synthesis using *L. camara* leaves aqueous extract:

The *L. camara* leaves aqueous extract used for the reduction of Au\(^{+}\) ions to Au\(^{0}\) was prepared by adding 1 g of leaves powder in a 50 ml beaker with 10 ml distilled water. The mixture was then boiled for 30 min in magnetic stirrer with a rpm of 700. In a typical experiment, the obtained leaves aqueous extraction was filtered using Whatman No. 1 filter paper and filtered to get the pure transparent extract. 5 ml of the leaves aqueous extract was added to 1 mM aqueous Gold (III) chloride hydrate solution (0.5 ml). Colour change is due to excitation of Surface Plasmon Resonance (SPR) vibration, which indicated by reduction of Au\(^{+}\) ions to Au\(^{0}\) as shown in the Figure 2. After the completion of the reaction, AuNPs were spun at 15,000 rpm, for 30 min at 37 C, the supernatant was discarded and then fine sediment pellet was centrifuged again with distilled water to eliminate any biomaterials that could interfere with binding of Au\(^{+}\) to the biomass or construction of the AuNPs (Fig. 2).

Possible mechanism of AuNPs synthesis:

Upon mixing the aqueous leaves extracts of *L. camara* with aqueous Gold (III) chloride hydrate solution, the solution transmuted color rapidly from dark brown to violet, indicating the formation of AuNPs. The formed AuNPs exhibit a
visible violet colour due to the localized SPR. The accepted hypothetical mechanism for the synthesis of nanoparticles in this way is by a phytochemical-driven reaction in which the plant extracts contain complex reducing molecules such as antioxidants, enzymes, and phenolic moieties, which reduce gold cations into AuNPs. The hypothetical reduction of Gold (III) chloride hydrate is driven by the presence of the phytochemicals to form zero valent gold, which will subsequently lead to the agglomeration of gold atoms to nanosized particles, which are finally stabilized by the phytochemicals to give isotropic (spherical) AuNPs.

Photosynthetic plants, including *L. camara*, contain a complex biological network of antioxidant metabolites and enzymes that work collectively to prevent oxidative damage to cellular components such as carbohydrates, polyphenols, flavonoids, terpenoids, triterpenes, alkaloids, tannins and proteins, which could act as reductants for metal cations, leading to the formation of AuNPs. It is also probable that acids, alkaloids, anthocyanins and betacyanins, carbohydrates, cardiac glycosides, coumarins, flavonoids, glycosides, phenols, proteins, quinones, saponins, steroids, tannins, terpenoids and triterpenoids can reduce gold ions to form nanoparticles at an elevated temperatures. Proteins, phenolics, and other chemical compounds within leaf extracts can reduce gold salts and provide exquisite tenacity toward the agglomeration of the formed nanoparticles. In *L. camara* leaves aqueous extract, all the secondary metabolites play crucial roles in the bio-reduction of metal ions, yielding nanoparticles as shown in Table 1.

UV–Visible spectral analysis:

Gold nanoparticles exhibit a distinct optical feature commonly referred to as Localized Surface Plasmon Resonance (LSPR), that is, the collective oscillation of electrons in the conduction band of gold nanoparticles in resonance with a specific wavelength of incident light. LSPR of gold nanoparticles results in a strong absorbance band in the visible region (500 nm - 600 nm), which can be measured by UV-Vis spectroscopy. The LSPR spectrum is dependent both on the size, and shape of gold nanoparticles as shown in the Figure 3. Upon binding of aqueous extracts to the gold nanoparticle surface, the LSPR spectrum will red-shift by a few nanometers, as shown in Figure 3. This shift is a result of an increase in the local refractive index at the gold nanoparticle surface, and is the basis of label-free SPR biosensing. For particles with uneven shapes such as gold nanourchins or gold nanorods this local refractive index change is more profound due to a further
Table 1: Qualitative phytochemical analysis of *L. camara* aqueous extract

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Phytochemicals</th>
<th>L. camara</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acids</td>
<td>++</td>
</tr>
<tr>
<td>2</td>
<td>Alkaloids</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>Anthocyanins and Betacyanins</td>
<td>+++</td>
</tr>
<tr>
<td>4</td>
<td>Carbohydrates</td>
<td>++</td>
</tr>
<tr>
<td>5</td>
<td>Cardiac Glycosides</td>
<td>++</td>
</tr>
<tr>
<td>6</td>
<td>Coumarins</td>
<td>++</td>
</tr>
<tr>
<td>7</td>
<td>Flavonoids</td>
<td>++</td>
</tr>
<tr>
<td>8</td>
<td>Glycosides</td>
<td>++ ++</td>
</tr>
<tr>
<td>9</td>
<td>Phenols</td>
<td>++ ++</td>
</tr>
<tr>
<td>10</td>
<td>Proteins</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Quinones</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>Saponins</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>Steroids</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>Tannins</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>Terpenoids</td>
<td>++</td>
</tr>
<tr>
<td>16</td>
<td>Triterpenoids</td>
<td>++</td>
</tr>
</tbody>
</table>

+ Present and – Absent

Fig. 3: UV-Vis spectral image of *L. camara* AuNPs.

Enhancement of the electromagnetic field at points of "unevenness" at the particle surface. It can be observed that the reduction of gold ions reaches saturation within 10 min of reaction, and after that, only slight variations can be noted in the intensity of SPR bands. This result indicates that the reaction is completed in 10 min. Figure 4 showed that there is no obvious peak for *L. camara* aqueous extract.

XRD patterns of the AuNPs synthesized *L. camara* aqueous extract displayed Bragg reflections representative of the face centred cubic (fcc) structure of gold (Fig. 5). The intensity of the peak of 111 at 38.3° diffraction was much stronger than those peaks of 200 and 220 at 44.3° and 45.4°, respectively. The mean size of the AuNPs was also calculated using the Debye–Scherrer equation by determining the width of the 111 Bragg reflection. The mean size and shape of the AuNPs determined from XRD patterns confirmed the data analyzed from TEM images. In the case of the optimum aqueous core extract, the average diameter obtained from TEM and XRD analysis was in the range of 5–50 nm, respectively. As the Debye–Scherrer equation is best applicable to highly monodispersed nanoparticles.
FTIR spectral image:

Figures 6 and 7 show the FTIR spectra of *L. camara* aqueous extract and AuNPs. *L. camara* leaves aqueous extract revealed a number of intense bands at 915.3 cm\(^{-1}\) (C-F), 1182 cm\(^{-1}\) (C-F), 1294 cm\(^{-1}\) (C-O-C stretch), 1492 cm\(^{-1}\) (C=C aromatic) and 2999 cm\(^{-1}\) (-C-H stretch). The FTIR spectrum of AuNPs bio-reduction showed the bands at 1492 cm\(^{-1}\) (C=C aromatic) and 3006 cm\(^{-1}\) (=C-H stretch).

HR-TEM analysis:

HRTEM image of AuNPs (Fig. 8) showed mostly the presence of spherical or ovoid nanoparticles in the range of 5-50 nm. As observed in the figures, the AuNPs showed ovoid structure with little aggregation. This size was also in accordance with XRD analysis. Several TEM images are presented in Figure 8 as examples of the AuNPs shapes formed when the plant extracts were used. In some cases, these shapes corresponded to single crystals, as can be deduced from their diffraction patterns. Since the HR-TEM images show only a few particles in each picture, statistically reliable distributions of these shapes and sizes cannot be evaluated.

According to the results of the two investigations, gold nanoparticles stabilised with matured leaves provide a more stable absorption peak than aqueous extract. In comparison to the citrate stabilised gold nanoparticle, matured leaves provide a similar UV-Vis spectrum,
stability, and band gap energy. A combined UV-Vis spectrum for mature leaves generated AuNPs at notable synthesised intervals is shown in Figure 3 for comparison with aqueous extract UV-Vis spectra. Figure 3 shows how the surface plasmon peak of the identical AuNPs changes over time. Because the green synthesis of gold nanoparticles may yield stable products, as evidenced by time dependent investigations, it is critical to get a mechanistic understanding of nanoparticle production. In the case of green synthesis, a reducing agent is employed (aqueous leaves extract). The precursor in this case is gold, which produces Au\(^+\) ion, which is reduced first to Au\(^{1+}\) (first reduction) and subsequently to Au\(^0\) (second reduction) by the citrate group. Essentially, the reduction is followed by the formation of clusters, which are subsequently transformed into bigger polycrystalline particles by aggregation.

According to one previous research, the growth process is explained in terms of the creation of 2.5 nm clusters, which are then organised into chains and networks of crystalline particles joined by 4 nm amorphous gold (Kamal, 2014; Unal et al., 2020; Nutan et al., 2020; Hussein et al., 2020; Vijaykumar et al., 2020). The chain’s diameter grows until it collapses at 5-50 nm to form smaller spherical particles. Similarly, the growth of tiny particles continues in a cyclical way. SPR-dependent formation has also been demonstrated, including two to three stages such as nucleation, diffusion-controlled growth, and intraparticle ripening (Hu et al., 2020; Muller et al., 2021; Qiu et al., 2021; Jakhu et al., 2021; Jana et al., 2021; Khatami et al., 2021). The study with advanced instruments on particle growth suggests that the reaction temperature and the initial concentration of gold precursor are the factors...
influencing the growth process, which significantly accelerate the particle formation process as the concentration of gold precursor increases. In the case of biogenesis (AuNP), the various phytochemicals contained in the *L. camara* aqueous extract, such as phenolic, alkaloid, flavonoid, enzymes, proteins, and so on, provide the first reduction step of Au$^+$ to Au0. They also serve as a stabilising agent for the newly created nanoparticles (Leen *et al.*, 2019).

Since no citrate is used for reduction, this is a green substance. Another type of growth process is chemical synthesis. By making the procedure inexpensive, it minimises the usage of harmful chemicals there. Polyphenols, organic acids, and proteins have well-established reducing capacities, thus the extract is predicted to have a synergistic impact with all of the phytochemicals.

So far, no precise process for the production of plant extract-based nanoparticles has been discovered. However, the significance of biosynthesis of nanoparticles using plant extract derives from the benefits of generating vast quantities without contamination and having a spherical form that is energetically favourable.

Antibacterial activity of AuNPs:

Table 2 shows that *Staphylococcus aureus* (25923) had a greater zone of inhibition (25 mm) in 40 mg/ml, while *Enterococcus faecalis* – 29212 had lower zone of inhibition (12 mm) in 40 mg/ml. ATCC culture shows activity in a dose-dependent manner whereas Table 3 showed *Staphylococcus aureus* alone had a greater zone inhibition (22 mm) in 40 mg, while *Klebsiella pneumoniae* had lower zone of inhibition (13 mm) in 40 mg/ml when compared to other species of clinical strains of bacteria. Gold ions as well as AuNPs were known to have strong antibacterial activities. The antibacterial activity of different concentration of solutions containing AuNPs demonstrated that both Gram-positive and Gram-negative bacteria were inhibited. The inhibition rate at

![Fig. 8: HR-TEM image of *L. camara* AuNPS. (A): Ovoid shaped nanoparticles at 20 nm scale, (B): Bilayered ovoid shaped nanoparticles at 0.2µm scale, (C and D): slightly aggregated ovoid shape nanoparticles and (E): SADE image of polydispersive shaped nanoparticles.](image-url)
Table 2: Antibacterial activity of ATCC culture against AuNPs

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the organisms</th>
<th>Zone of Inhibition in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AK</td>
</tr>
<tr>
<td>1</td>
<td>Escherichia coli - 25922</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Klebsiella pneumoniae - 13883</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Pseudomonas aeruginosa - 25873</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Enterobacter - 200321</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Staphylococcus aureus - 25923</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Enterococcus faecalis - 29212</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 3: Antibacterial activity of clinical strains against AuNPs

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the organisms</th>
<th>Zone of Inhibition in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AK</td>
</tr>
<tr>
<td>1</td>
<td>Escherichia coli</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Klebsiella pneumoniae</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Pseudomonas aeruginosa</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Enterobacter</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Staphylococcus aureus</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Enterococcus faecalis</td>
<td>09</td>
</tr>
</tbody>
</table>

concentration of 40 mg/ml of AuNPs and the surface of bacteria cell membrane that disturbing the permeability, respiratory functions and finally leading to zone of inhibition were noticed in the present study.

AuNPs have many advantages such as simple and controlled synthesis, small size, and high biocompatibility and SPR, but whether they can be affected by in vivo or intracellular factors needs to be elucidated. Gold nanoclusters’ small size and different shapes improve their antibacterial effects, but further research is necessary on the toxicity of organisms after a maximum concentration in our study. It is also indispensable to study the influence or changes in the use of AuNPs in a specific period in organisms or a defined physiological state in certain diseases. AuNPs are easily modified, and functionalized AuNPs have considerable antibacterial application potential. AuNPs can be modified to improve their antibacterial properties for clinical antibacterial use. They can also be applied as drug carriers to improve drug efficacy, and their photothermal properties can be harnessed to kill bacteria. Combining AuNPs with different materials produces drugs with antibacterial properties. In summary, AuNPs’ various characteristics can be used to functionalize them for specific requirements to provide new methods of solving different antibacterial challenges. These findings support the previous reports of antibacterial activity of AuNPs against *Bacillus cereus*, *Bacillus licheniformis* (Babu and Gunasekaran, 2009) and *Escherichia coli* (Kalimuthu et al., 2008; Liu et al., 2020)

Conclusion

The green production of AuNPs utilising *L. camara* aqueous extract is presented in this study as an environmentally friendly technique. The extract indicates that the presence of various phytochemicals in the *L. camara* aqueous extract
contributes to the characteristics of both reducing and stabilising agents. The use of plant leaves maximises the use of undesired waste material while being economically friendly, efficient, and safe. There has been no prior research regarding the use of *L. camara* for the synthesis of AuNPs. The AuNPs that were created have the potential to be used in biomedical and other applications where nontoxicity is critical. AuNps shows an active and stable antibacterial activity in both Gram-positive and Gram-negative bacteria, but it is more effective for Gram-positive organisms when compared with Gram-negative organisms. Because of its significant antibacterial efficacy, it may have potential applications in the field of biomedicine. Finally, it can be extendable to large scale production of Au NPs for commercial use.

References

promoted formation and biological properties of injectable hydrogels. Biomacromol. 21(9): 3782-3794.

