Growth and Condition of Exotic Fish Grass Carp (*Ctenopharyngodon idella*, Steindachner 1866) Reared in Small Village Pond

Ujjania N.C., Shah Niharika P.* and Patel Ankit D.

Department of Aquatic Biology, Veer Narmad South Gujarat University, Surat, Gujarat, India

*Corresponding Author

Received: 14th February, 2024; Accepted: 30th March, 2024; Published online: 15th April, 2024

https://doi.org/10.33745/ijzi.2024.v10i01.060

Abstract: The objective of the current paper was to assess the growth and condition of small village pond reared grass carp *Ctenopharyngodon idella* (Steindachner, 1866) on the basis of length weight relationship and condition factor. For current study length and weight of the selected species was measured in two phases during January to March 2021. The result depicted that length ranged from 19.1 to 63.1 cm (44.581±0.837 cm) and weight ranged from 90 to 2902 g (1458.518±55.814 g). The length frequency distribution showed that population was dominated by large fishes. The correlation coefficient (r^2) 0.811, 0.705 and 0.990 was noted during the phase I, phase II and pooled data showed the strong linear relationship between the length and weight variables. The growth constant or regression coefficient (b) of the studied fish for phase I, phase II and pooled population were noted as 2.336, 2.798, and 3.027, respectively. The value of growth constant (b) was <3.000 during the phase I and phase II showed the negative allometric growth while it was (b ≥ 3.000) for pooled population which resulted isometric to positive allometric growth of the fish. The mean value of “K” was more than 1.00 for the phase I, phase II and pooled population was depicted good condition of fish in small village pond. These findings clearly indicated that the growth of the fish was good in village pond which showed that aquatic environment of studied village was conducive for the fish.

Keywords: *Ctenopharyngodon idella*, Length-weight relationship, Growth, Condition factor

https://doi.org/10.33745/ijzi.2024.v10i01.060

This is an Open Access Article licensed under a Creative Commons License: Attribution 4.0 International (CC-BY). It allows unrestricted use of articles in any medium, reproduction and distribution by providing adequate credit to the author(s) and the source of publication.

Introduction

The *Ctenopharyngodon idella* (Steindachner, 1866) is termed as grass carp which is well built silvery elongated carp with dark grey back and dark fins. It lives in stagnant and slows flowing water with full of aquatic plants (Prabha and Kusum, 2017). It has herbivorous appetites and feeds on macro vegetation, including grass, aquatic plants and aquatic macrophytes (Pillay, 2004). Grass carp selected as the most obvious and safest choice due to availability of nutrient-rich ponds overgrown...
with aquatic plants (Horváth et al., 2002) which can serve as biological control to decreasing the thick floating submerge plant. According to Bondad (2007) the first cultured species around the world is grass carp (370 million tons) followed by silver carp (346 million tons) and common carp (236 million tons) while in 2010 grass carp reached about 430 million tons (FAO, 2012). The study of length-weight relationship (LWR) in fishes is of primary importance in setting up yield equations (Ricker, 1958), estimating the number of fish landed and in comparing population in the time and space (Chanchal et al., 1978). It is dynamic in biological education to make preparation of length-weight relationships in order to markedly separate the weight of known groups from expected ones and to estimate breeding, feeding state, fatness, appropriateness of environment (Saha et al., 2009) and provides sympathetic of species biology. The condition factor (K) provides a quantitative information that represents the condition of the fish, depicting its habitat as vital indices such as physiological condition and feeding habit in a given position based on species length and weight (Taymaa et al., 2018) and also fish maturity stage, spawning, biotic and abiotic factors (Anene, 2005; Mansor et al., 2012), food sufficiency in the environment, which all fall under physiological features which are important values to be reckoned of fish species (Ujjania et al., 2012). Coefficient values resulting from the length weight relationships figures are products of the condition factor (K) as a key to understand the lifecycle of fish (Esenowo et al., 2016). Considering the importance of length, weight and condition factor, present study was carried out to evaluate the growth and condition of grass carp to resolve the environmental issues and better production strategies in village pond.

Materials and Methods

The grass carp morphologically has low set eyes very near to the mouth with elongated body, broad head, short snout and sub-terminal mouth and large square shape operculum (Fig. 1). The specimens of grass carp were collected with help of caste net from a small village pond of 6 ha situated at Atgam, Valsad district, Gujarat, India and located on Latitude - 20º39ʹ05ʺ N Longitude - 73º00ʹ27ʺ E geographical location. The morphometric measurements (length and weight) were randomly measured from 369 specimens during January 2021 and March 2021 and termed as sampling phase I and sampling phase II. The total length of specimen was measured from the tip of the snout to the end tip of the longer lobe of the caudal fin with the help of measuring board while weight was taken by using an electronic balance to the nearest 0.01 g. These length data were divided in different length groups at the distances of 5 cm.
Table 1: Growth parameter measurement of grass carp during the study

<table>
<thead>
<tr>
<th>Sampling</th>
<th>Length group</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total length (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>15-20</td>
<td>2.00</td>
<td>19.100</td>
<td>19.900</td>
<td>19.500</td>
<td>0.400</td>
</tr>
<tr>
<td></td>
<td>20-25</td>
<td>62.00</td>
<td>20.000</td>
<td>25.000</td>
<td>23.160</td>
<td>0.203</td>
</tr>
<tr>
<td></td>
<td>25-30</td>
<td>83.00</td>
<td>25.100</td>
<td>29.000</td>
<td>26.651</td>
<td>0.105</td>
</tr>
<tr>
<td>II</td>
<td>50-55</td>
<td>30.00</td>
<td>50.100</td>
<td>55.000</td>
<td>53.447</td>
<td>0.212</td>
</tr>
<tr>
<td></td>
<td>55-60</td>
<td>135.00</td>
<td>55.100</td>
<td>59.800</td>
<td>56.940</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>60-65</td>
<td>57.00</td>
<td>60.100</td>
<td>63.100</td>
<td>60.932</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>Pooled</td>
<td>369.00</td>
<td>19.100</td>
<td>63.100</td>
<td>44.58</td>
<td>0.837</td>
</tr>
</tbody>
</table>

	Weight (g)					
I	15-20	2.00	90.00	90.00	90.00	0.000
	20-25	62.00	94.00	210.00	159.84	4.72
	25-30	83.00	164.00	240.00	203.05	2.02
II	50-55	30.00	1365.00	2100.00	1783.43	32.34
	55-60	135.00	1500.00	2820.00	2256.82	27.27
	60-65	57.00	2200.00	2902.00	2620.83	31.90
	Pooled	369.00	90.00	2902.00	1458.58	55.81

	Condition Factor (K)					
I	15-20	2.00	1.142	1.292	1.217	0.075
	20-25	62.00	0.970	1.577	1.265	0.020
	25-30	83.00	0.945	1.264	1.072	0.007
II	50-55	30.00	1.085	1.312	1.165	0.012
	55-60	135.00	0.719	1.389	1.222	0.013
	60-65	57.00	0.989	1.327	1.160	0.016
	Pooled	369.00	0.719	1.577	1.181	0.007

The length-weight relationship was calculated from the transformed data using nonlinear power function \(Y = aX^b \) (Ricker, 1973) and simple linear equation \(\log W = \log a + b \log L \) (Pauly, 1983). The condition factor (K) was determined from the equation \(K = W/L^3 \times 100 \) (Htun-Han, 1978), where ‘K’ is condition factor, ‘W’ is weight (g), ‘L’ is total length (cm).

Results

During the period of study total length and body weight of 369 samples of grass carp were noted and total length 19.1–29 cm (25.081±0.184 cm) and weight 90-240 g (183.286±3.021 g) were observed during the phase I whereas, length 50.1-63.1 cm (57.493±0.178 cm) and weight 1365-2902 g (2286.306±25.414 g) were observed during the phase II (Table 1). Similarly, the pooled population showed the length 19.1-63.1 cm (44.58±0.837 cm) and weight 90-2902 g (1458.58±55.81 g) of grass carp in the studied pond (Table 1). In the current study, length frequency distribution showed that population of the grass carp was dominated by larger fishes 22.50% and 36.60% during the phase I and phase II, respectively (Table 1, Fig. 2) whereas, condition factor (K) was 0.719 to 1.577 (1.181±0.007) noted from pooled population (Table 1). Apart from this, the morphometric variables (length and weight) showed the positive strong linear relationship that was evident by graphical presentation and correlation coefficient \(r^2 \) which was noted 0.811,
Fig. 2: Length frequency distribution of grass carp during the different sampling phases.

0.705 and 0.990 for phase-I, II and pooled population, respectively (Fig. 3). The growth constant \((b) \) were observed 2.336, 2.798, and 3.027 during the phase I, II and pooled population, respectively (Fig. 3).

Discussion

The LWR is a mathematical relationship between length and weight which yields necessary information about the general condition, comparative growth patterns of a fish (Moutopoulos and Stergiou, 2002). The dominance of the larger fishes in studied water body showed that aquatic environment of village pond is appropriate and favorable to survive the fishes (Saha *et al*., 2009). The condition factor \((K) \) reflects condition of fish and acceptability of the surrounding aquatic environmental condition and variations. The factors affecting the values of \(K \) include sex, stages of maturity, and state of stomach contents (Gayanilo and Pauly, 1997). It is also an indicator of habitat, behavior, physiological condition and feeding of fish in the environment (Bagenal, 1978). In present study, the resulted value of \(K \) was \(>1.0 \) which indicated that the condition of grass carp population was conducive, good and well established in village pond. Prabha and Kusum (2017) reported similar findings on condition factor in grass carp of Nepal and Taymaa *et al*., (2018) and Abowei *et al*., (2009) in common carp from Iraq and Nigeria, respectively.

The length-weight relationship shows the conversion of growth-in-length to growth-in-weight (Silva *et al*., 2015). Prabha and Kusum (2017) reported correlation coefficient 0.710 in grass carp of Nepal which is similar to findings of the present study. Bhosale and Bhilave (2014) reported highly positive correlation of length and weight in the grass carp and resulted 0.97 which was very close to findings of the present study while Ujjania *et al*., (2022) reported comparatively high value of \(r^2 \) (0.886) and Taymaa *et al*., (2018) reported comparatively low value of \(r^2 \) (0.20 to 0.67) in other carp from India and Iraq, respectively.

The growth constant and regression coefficient \((b) \) in LWR presented the increment in body weight in relation to length (Martin, 1996). In present study, the growth constant \((b) \) for phase I and phase II was observed \(b<3.000 \) which indicated that the growth of the studied fish was negative allometric and increase in length was more with respect to weight but the value of \(b=3.000 \) was noted for pooled population which depicted isometric growth of the studied fish which express that increase in weight was more or
Fig. 3: Length - weight relationship of grass carp. (A) Phase I, (B) Phase II and (C) Pooled data.
equal to the length. Similarly, other studies on grass carp reported growth constant 2.87 from experimental pond (Bhosale and Bhilave, 2014) whereas in common carp it was reported 1.03 to 3.54 (Taymaa et al., 2018), 2.27 to 2.46 (Fagbuaro et al., 2015), 3.097 (Rishikanta et al., 2015), 1.9 to 2.3 (Callen et al., 2014), 2.901 (Sedaghat et al., 2013), 3.01 to 3.301 (Bayhan et al., 2008) and 2.50 to 3.44 (Abdallah, 2002).

Conclusion

The length-weight relationship of grass carp showed that length and weight variables are positively correlated and growth constant (b) indicated negative allometric growth during the phase I and II while isometric for the pooled population of exotic grass carp. The values of condition factor (K) being >1.0 is sign of good condition and wellbeing of the fish in studied village pond. On the basis of these findings it is concluded that aquatic environment of village pond was conducive and suitable for survival and growth of studied fish. The information of present study could be considered for the researchers as baseline data for further monitoring and growth assessment of exotic fish grass carp.

Acknowledgements

The authors express gratitude to authorities at Department of Aquatic Biology, Veer Narmad South Gujarat University for providing laboratory facilities and fish farmers for help in sampling and providing the required information to complete this research work successfully.

References

